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Abstract

Referring video object segmentation (RVOS) is a challeng-

ing language-guided video grounding task, which requires

comprehensively understanding the semantic information

of both video content and language queries for object

prediction. However, existing methods adopt multi-modal

fusion at a frame-based spatial granularity. The limitation

of visual representation is prone to causing vision-language

mismatching and producing poor segmentation results. To

address this, we propose a novel multi-level representation

learning approach, which explores the inherent structure

of the video content to provide a set of discriminative

visual embedding, enabling more effective vision-language

semantic alignment. Specifically, we embed different visual

cues in terms of visual granularity, including multi-frame

long-temporal information at video level, intra-frame spa-

tial semantics at frame level, and enhanced object-aware

feature prior at object level. With the powerful multi-level

visual embedding and carefully-designed dynamic align-

ment, our model can generate a robust representation for

accurate video object segmentation. Extensive experiments

on Refer-DAVIS17 and Refer-YouTube-VOS demonstrate

that our model achieves superior performance both in

segmentation accuracy and inference speed.

1. Introduction

Given a natural language expression, referring video ob-

ject segmentation (RVOS) aims to predict the most relevant

visual target from a video. It has wide applications, includ-

ing video editing, virtual reality and human-robot interac-

tion [49]. Different from the regular unsupervised or semi-

supervised video object segmentation (VOS) [12,21,33,53,

54], which localizes objects with salience or annotations of

key frames, RVOS requires cross-modal understanding be-
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Figure 1. Visual comparison among the different-level model-

ings. The simple frame-level modeling has difficulty in recogniz-

ing (b) the moving object or (c) the occluded and small object. In

contrast, our multi-level modeling offers a joint way to leverage

the long-temporal and spatial salient cues for cross-modal align-

ment, thus providing more accurate results (a) (d).

tween the language query and video content.

As a human recognizes a referent object with the guid-

ance of language, it is natural to rely on three steps: 1) ob-

serve its appearance (i.e., frame-based), 2) check its move-

ment based on multiple frames (i.e., video-based), 3) shift

more attention to the occluded or small objects (i.e., object-

based). Most current approaches [1,25,43] simply leverage

successful referring image comprehension methods to the

cross-model understanding. They either use referring image

grounding [24, 31, 58, 60] to generate target object bound-

ing boxes as proposals, or utilize referring image segmen-

tation directly [6, 10, 18, 22, 27, 56]. However, these solu-

tions build on the simple frame-level visual representation

to perform frame-sentence interaction. These frame-level

modeling methods suffer from two limitations compared to

the human recognition system: ignoring long-temporal in-

formation and lacking attention to salient spatial objects.

The limitation of visual representations causes the mis-



alignment between two modalities, further producing inac-

curate segmentation results. For example, as illustrated in

Fig. 1, given an input video and its corresponding descrip-

tion, “a lion is walking towards right side”, RVOS aims to

segment the moving lion from the video. However, as there

are multiple lions in the video, the frame-level modeling

cannot recognize the correct one by employing only spa-

tial appearance information as shown in Fig. 1(b). Since

the referent object has a temporally moving status, it re-

quires incorporating long-temporal information from mul-

tiple frames to identify the action. In addition, another ex-

pression, “a lion lying on a high rock” refers to an occluded

and small-size lion. However, the frame-level modeling fo-

cuses only on the global semantics concerning each frame,

and ignores these important and representative visual re-

gions. It will lead to the referent object being missing, as

shown in Fig. 1(c). To ease this difficulty, it is also neces-

sary to capture the salient spatial objects from each frame

as candidates to facilitate cross-modal understanding.

In this paper, we propose a novel multi-level learning

framework for addressing RVOS. The model first presents a

fine-grained analysis of video content for multi-granularity

visual embedding:

• At the video granularity, we propose to model long-

temporal dependencies of the entire video using a cross-

frame pixel-wise calculator, which makes the feature rep-

resentations to capture the object movement and dynamic

scenes information.

• At the frame granularity, we encourage the frame repre-

sentation to describe global content within a whole image,

by learning to aggregate intra-frame information following

the self-attention mechanism.

• At the object granularity, we leverage object-aware in-

formation generated from an object detector to enhance

the foreground and background discriminability, benefiting

from addressing the cases of occlusion and small object.

Once we obtain the multi-level visual embedding, we

propose Dynamic Semantic Alignment (DSA) to interact

them with the linguistic features. In particular, to effec-

tively capture the granularity-specific information, we first

separately incorporate global linguistic semantics accord-

ing to the different visual cues. The generated vision-

conditioned linguistic features are combined with the corre-

sponding visual embedding to provide a granularity-specific

representation for the referent object. Finally, we integrate

the multi-level target-aware features and boundary infor-

mation to guide the mask prediction of all frames using a

Boundary-Aware Segmentation (BAS).

Overall, our contributions are summarized as three-fold:

First, we propose a new framework for RVOS based on

multi-level representation learning. It precludes the lim-

itation of single frame-level visual modeling by a more

structural video representation, promoting accurate vision-

language semantic alignment. Second, we introduce a

Dynamic Semantic Alignment (DSA), which dynamically

learns and matches linguistic semantics with the different-

granularity visual representation more compactly and ef-

fectively. Third, our approach achieves compelling per-

formance on two challenging benchmarks, including Refer-

DAVIS17 [25] and Refer-YouTube-VOS [43]. Notably, we

obtain a significant improvement of 6.6% than the best

frame-grained method in terms of J on Refer-DAVIS17.

Meanwhile, it achieves a high inference speed at 53.2 FPS.

2. Related Work

2.1. Referring Video Object Segmentation

The goal of referring video object segmentation (RVOS)

is to localize the entities in a video that are matched with

the description of a natural language expression. Khoreva et

al. [25] introduce a two-stage method, the first stage to gen-

erate bounding boxes in image [58, 60] and the second one

to segment the referent object from video [20, 40]. Seo et

al. [43] extend YouTube-VOS [54] into a new and large-

scale benchmark, named Refer-YouTube-VOS. Meanwhile,

they propose an end-to-end framework by unifying cross-

modal attention module [56] and space-time memory net-

work [38]. Recently, RefVOS [1] employs the fine-grained

categorization of expressions to overcome the overfitting.

However, their frame-sentence interaction mechanism lacks

the long-temporal and fine-grained visual representations,

further resulting in the cross-modal misalignment as dis-

cussed before. Although a large number of works on ac-

tor and action video segmentation [11, 19, 34, 45, 46, 57]

also study the problem of language-queried video segmen-

tation, their descriptions are limited into the format of ‘ac-

tors’ performing a salient ‘action’. The newly appearing

RVOS shows improved difficulties in both visual and lin-

guistic modalities. Thus, our method can be regarded as a

more generalized work to handle real-life situations.

2.2. Multi­Level Representation Learning

Multi-level representation learning is a common concept

in feature embedding, including natural language process-

ing [9, 14, 32] and computer vision [2, 7, 8, 13, 17, 52, 61].

The language processing usually cooperates with the word-

phrase-sentence composition semantics to enrich word em-

bedding, while the visual tasks focus on exploiting spatial

or temporal granularity to learn a robust and powerful vi-

sual feature representation [29, 30, 47, 48]. For the video

understanding task, the most popular granularity analysis is

built on the temporal order [16, 17, 28, 49]. For instance,

Hu et al. [17] associate different sub-networks to leverage

the inherent temporal continuity of previous frames for fast

video semantic segmentation. Lu et al. [30] summarizes

the frame-term, short-term, long-term and global features of



CNN

Query: A sheep running down a hill

Semantic Alignment

Multi-Level Visual Representation Dynamic Semantic Alignment Boundary-Aware Segmentation

[0, 1]

𝓛𝒃𝒅𝒓𝒚 

𝓛𝒄𝒐𝒏𝒇  

𝓛𝒎𝒂𝒔𝒌 

Video-level

Embedding

Frame-level

Embedding

Object-level

Embedding

Semantic Alignment

Semantic Alignment

𝓕𝒔𝒆𝒈 

CC𝑭 

𝑷 𝒗𝒊𝒅𝒆𝒐 

𝓕𝒃𝒅𝒓𝒚 

𝓕𝒄𝒏𝒏 

𝓕𝒅𝒆𝒄 CC ConcatenationC Concatenation

Object Detector

𝑷 𝒇𝒓𝒂𝒎𝒆
 

𝑷 𝒐𝒃𝒋𝒆𝒄𝒕 

𝑴𝒗𝒊𝒅𝒆𝒐
 

𝑴𝒇𝒓𝒂𝒎𝒆
 

𝑴𝒐𝒃𝒋𝒆𝒄𝒕
 

𝑰 

𝓕𝒄𝒐𝒏𝒇 

𝓛𝒎𝒂𝒔𝒌 

Figure 2. Illustration of our multi-level representation learning with semantic alignment, which consists of three major components,

a multi-level visual representation for embedding different-level visual features (§3.1), a dynamic semantic alignment for matching vision-

language modalities (§3.2), and a boundary-aware segmentation for outputting pixel-wise masks of the target (§3.3).

each video for robust unsupervised video object segmenta-

tion. However, these methods are limited in visual modeling

and cannot deal with the crucial cross-modal understand-

ing. Recently, several language-queried tasks [23,36,50,59]

address these drawbacks and achieve promising object or

moment localization via global-local video-language align-

ment, but they are not suitable for fine-grained object seg-

mentation. This paper proposes a new perspective of explor-

ing multi-level video information and cross-modal semantic

alignment for precise mask prediction.

3. Methodology

Given a video clip and a natural language query, the goal

of our approach is to automatically generate a set of ref-

erent object masks. We illustrate the overall pipeline in

Fig. 2. The multi-level visual representation first separately

embeds the CNN-encoded features at video, frame, and ob-

ject level, which provides three enhanced visual representa-

tions (§3.1). The specific visual representation and the lin-

guistic embedding are then fed into our dynamic semantic

alignment to jointly highlight the visual features of interest

(§3.2). Finally, the boundary-aware segmentation integrates

the target-aware features and boundary information to guide

the referent object prediction (§3.3). In the following, we

will introduce them carefully.

3.1. Multi­Level Visual Representation

Before learning multi-level visual representations, we

first extract frame-wise video features for a given video clip.

The T -frame video I∈R
T×3×H×W is fed into the ResNet-

50 [15] to obtain the res5 features F ∈R
T×c×h×w, where

c, h, w represent the channel, height, weight number of the

3D tensors, respectively. Furthermore, a 1×1 convolution

is used to reduce the channel dimension from c to a smaller

d (d << c), as well as keep the same dimension with lin-

guistic features in §3.2. The transformed video features are

then fed into our multi-level visual representation module

to embed different types of visual cues.

The multi-level visual representation consists of three

independent embedding modules, 1) a video-level embed-

ding to describe the global and long-temporal statistics of

the entire video, 2) a frame-level embedding to learn the

intra-frame long-distance semantic context, 3) an object-

level embedding to highlight the object-aware features.

Video-level Embedding. Inspired by the recent success of

visual transformer [3, 51], we take advantage of the core

long-distance modeling ability of self-attention to formu-

late our video-level embedding module. It handles all video

frames in a unified manner and models the pixel-level pair-

wise relation directly. Specifically, we flatten the entire

video features into a 2D pixel-wise sequence P ∈R
Thw×d.

Three different fully-connected layers WQ,WK ,WV are

used to transform the sequence as Qvideo,Kvideo,V video:

Qvideo = WQP ∈ R
Thw×d,

Kvideo = WKP ∈ R
Thw×d,

V video = WV P ∈ R
Thw×d.

(1)

Then we calculate a similarity matrix Avideo with pairwise

dot product and normalize it with softmax,

Avideo=Softmax(
QvideoKvideo⊤

√
d

)∈R
Thw×Thw, (2)

where Avideo measures the relevance between each pixel

in the video. These video sequence vectors are weighted

according to the relevance and added with the original P :

P̂ video = AvideoV video + P ∈ R
Thw×d, (3)



where P̂ video is the video-level feature embedding. It mod-

els multi-frame information and represents holistic under-

standing of the video.

Frame-level Embedding. To learn frame-level feature em-

bedding, following self-attention mechanism, we build the

spatial pixel-wise relationship for each frame. Unlike prior

work [43] that processes each pixel, our method is used on

each frame independently. It maps each frame feature into

2D tensor Pt ∈R
hw×d (t = 1, ..., T ), applies linear trans-

formation to generate Q
frame
t , K

frame
t , V

frame
t , and per-

forms weighting operation using learnable attention:

P̂
frame
t =Softmax(

Q
frame
t K

frame
t

⊤

√
d

)V frame
t +Pt, (4)

where P̂
frame
t ∈ R

hw×d represents the feature embedding

of the tth frame.

Object-level Embedding. In addition to learning the global

semantics for video and image, we also conduct object-level

feature embedding to capture salient spatial information.

This can be viewed an object detection process, which in-

cludes two sequential parts, an object encoder for object-

aware feature extraction, and a segmentation decoder for

salient object generation.

Let Fenc denote the object encoder, which accepts the

original video features F as input, and directly outputs the

object-level embedding P̂ object:

P̂ object = Fenc(F ). (5)

After that, we implement the segmentation decoder Fdec to

generate all salient objects:

Y object = Fdec(P̂
object) ∈ R

T×1×H×W , (6)

where Y object are one-channel feature maps for all frames,

which are activated using a sigmoid function, and super-

vised by the object-level ground-truth Ŷ object:

Lobject = Lmask(Y
object, Ŷ object). (7)

Here, with the encouragement of object-level loss Lobject,

the object encoder can highlight the object-sensitive fea-

tures to serve as the object-level embedding P̂ object. The

mask loss Lmask is the summation of Dice loss Ldice [35]

and focal loss Lfocal [26], i.e., Lmask= Ldice+Lfocal.

The object encoder Fenc can use various feature embed-

ding models, such as fully-convolutional network (FCN),

video-level encoder and frame-level encoder as aforemen-

tioned. Empirically, we choose the video-level encoder with

a 3×3 convolution to be our object encoder according to

the experiments in §4.4. The segmentation decoder Fdec

is built on fully-convolutional network that is similar to the

pyramid segmentation head in §3.3. To sum up, the joint

multi-grained learning provides an enhanced and informa-

tive visual representation, which will facilitate the following

vision-language semantic alignment.
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Figure 3. Two solutions of semantic alignment: (a) video-level

alignment for global and long-temporal alignment, and (b) frame-

level alignment for spatial alignment.

3.2. Dynamic Semantic Alignment

Given the different-level visual embedding representa-

tions P̂ video, {P̂ frame
t }Tt=1, P̂ object as well as its corre-

sponding language description, the goal of DSA is to enable

two modalities interact with each other for characterizing

the referent object representation. To dynamically learn the

global linguistic semantics that have the most relationship

with each visual granularity, we individually embed three

linguistic representations Svideo, Sframe, Sobject. Tak-

ing the video branch as an example, for the input language

query with N words, we follow the work [56] to encode

each word into a feature vector. A transformer encoder [44]

is trained to extract the specific linguistic features, which

are denoted as Svideo ∈ R
N×d where d is the feature di-

mension. The same operation is also applied on frame and

object branch to obtain Sframe and Sobject.

DSA includes two kinds of solutions in terms of the in-

teraction level, i.e., video-level alignment and frame-level

alignment, as depicted in Fig. 3. The video-level semantic

alignment Fvideo (used at video granularity) takes the tem-

poral information across two modalities to be aligned, while

the frame-level alignment Fframe (used at frame and object

granularity) is responsible for spatial alignment:

Mvideo = Fvideo(P̂
video,Svideo),

M
frame
t = Fframe(P̂

frame
t ,Sframe),

M
object
t = Fframe(P̂

object
t ,Sobject),

(8)

where Mvideo, M
frame
t , and M

object
t are cross-modal

features. Both Fvideo and Fframe have a standard semantic

alignment architecture as presented in the following.

Semantic Alignment. For the convenience of description,

we omit the granularity superscript and frame subscript of

visual features and reshape them as P̂ ∈ R
(T )hw×d. We add

the position embedding, as proposed in [44,51], into the vi-



sual and linguistic features to keep the coordinate alignment

and employ linear layers to transform them:

P̂ ′ = Linear(P̂ + POSV ) ∈ R
(T )hw×d,

S′ = Linear(S + POSL) ∈ R
N×d,

(9)

where POSV and POSL are the visual and linguistic po-

sition, respectively. The transformed visual and linguistic

features are further calculated through matrix product and

softmax normalization:

Alang = Softmax(
P̂ ′S′⊤

√
d

) ∈ R
(T )hw×N . (10)

Here attention map Alang represents the similarity between

each word and each location of the visual representation.

Next, the granularity-specific linguistic features are sum-

marized as Ŝ = AlangS ∈ R
(T )hw×d, and are added into

original P̂ to automatically align two features:

M = Linear(AlangS + P̂ ) ∈ R
(T )hw×d, (11)

where M represent the activated target-aware features af-

ter semantic alignment. We recover their level superscript

and the format of video, i.e., Mvideo, Mframe, Mobject∈
R

Thw×d. Their size is reshaped as T × d× h×w, and

we concatenate them along channel dimension, i.e., M =
[Mvideo,Mframe,Mobject] ∈ R

T×3d×h×w for following

mask estimation.

3.3. Boundary­Aware Segmentation

The BAS aims to produce pixel-wise masks using rich

target-aware and boundary-aware information. It first gen-

erates a one-channel boundary map B by accepting the

modulated target-aware features M and original visual fea-

tures F as input:

B=Fbdry

(

M ,F [2,3,4,5]
)

∈ R
T×1×H×W , (12)

where F [2,3,4,5] is a simplified feature denotation from dif-

ferent backbone layers (Res2,Res3,Res4,Res5). The

boundary head Fbdry and segmentation head Fseg have the

same pyramid architecture by inserting the different-scale

original features, as like the pyramid decoder of [43]. The

outputs from two heads are concatenated together to esti-

mate finer object masks E:

E=Fcnn

(

B,Fseg

(

M ,F [2,3,4,5]
))

∈ R
T×1×H×W ,

(13)
where Fcnn includes a superficial 3x3 convolutional layer.

The adopted instance-level loss combines the mask and

boundary supervision:

Linstance=Lmask(B, Ŷ ) + αLbdry(E, Ŷ bdry), (14)

where Ŷ , Ŷ bdry represent the ground-truth of B and E.

Lmask is the mask loss as mentioned in §3.1. Lbdry is the

boundary loss following [42] and α is a hyper-parameter.

The overall objective is the summation of object-level loss

(Eq. 7) and instance-level loss (Eq. 14):

L = Lobject + Linstance. (15)

3.4. Implementation Details

Network. The backbone model adopted in our approach

is ResNet-50 [15], which is pretrained on ImageNet [5].

We only use the feature maps from the last layer for visual

embedding and semantic alignment, while BAS accepts

the feature pyramids of the backbone model for FPN-like

coarse-to-fine segmentation. In BAS, the mapping block

between two levels consists of a 3× 3 convolution, a group

normalization (8 groups) and a bilinear upsampling layer.

The final one-channel feature maps of B and E are acti-

vated using sigmoid for training and inference.

Training. The input video has T =12 frames with the size

of 432 × 240. The language length is N = 20, and the

feature dimension is set to d=384. The object annotations

(Eq. 7) can be obtained by combining all instance-level la-

bels. We calculate the boundary annotations (Eq. 14) fol-

lowing the work of [42]. The hyper-parameter α is 0.2. Our

model is implemented on PyTorch [39] and trained on four

NVIDIA Tesla V100 GPUs with 32GB memory per card.

We optimize the overall model with AdaW optimizer using

learning rate 1e−4 for backbone, 1e−5 for the remaining

part. The batch size is set to 2. Note that we predict confi-

dence scores C=Fconf (M)∈R
T×1 for all frames with an

extra confidence estimation head Fconf , as shown in Fig. 2.

Therefore, we build a new overall objective:

L = Lobject + Linstance + βLconf (C, IoU(Y , Ŷ ), (16)

where IoU indicates the IoU calculation operation, and

Lconf is L2 loss. β = 0.1 serves as a hyperparameter.

Fconf contains a global average pooling and three fully-

convolution layers with the final layer outputting T scores.

Inference. During inference, we also exploit the recent

VOS method, STCN [4] to improve the cross-frame ob-

ject consistency as well as refine the segmentation results

as a post-processing strategy. STCN propagates the highest-

confidence mask in a bi-directional way to obtain the final

segmentation masks for evaluation. We regard the output

feature maps whose sigmoid activation value is higher than

0.5 as binary results.

4. Experiments

4.1. Experimental Setup

Datasets. We conduct experiments on two popular RVOS

benchmarks, i.e., Refer-DAVIS17 [25] and Refer-YouTube-

VOS [43]. Refer-DAVIS17 expands DAVIS17 [41] by an-

notating the objects of video with more than 1,500 refer-



Method Pretrained J F J&F

Khoreava et.al. [25] RefCOCO [37] 37.3 41.3 39.3

URVOS [43] RefCOCO [37] 41.2 47.0 44.1

RefVOS [1] RefCOCO [37] – – 45.1

Ours RefCOCO [37] 45.1 51.2 48.2

Baseline (frame-based) [56] Refer-YouTube-VOS 32.19 37.23 34.71

Baseline + RNN [56] Refer-YouTube-VOS 36.94 43.45 40.20

URVOS (pretraining only) [43] Refer-YouTube-VOS 44.29 49 41 46.85

URVOS [43] Refer-YouTube-VOS 47.29 55.96 51.63

Ours (pretraining only) Refer-YouTube-VOS 50.07 55.39 52.73

Ours Refer-YouTube-VOS 53.85 62.02 57.94

Table 1. The quantitative evaluation on Refer-DAVIS17 val set, with region similarity J , boundary accuracy F , and average of J&F .

Method prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 J F J&F

Baseline (frame-based) [56] 31.98 27.66 21.54 14.56 4.33 33.34 36.54 34.94

Baseline + RNN [56] 40.24 35.90 30.34 22.26 9.35 34.79 38.08 36.44

URVOS [43] 51.19 46.77 40.16 27.68 14.11 45.27 49.19 47.23

Ours 54.18 48.99 42.20 33.62 18.94 48.43 50.96 49.70

Table 2. The quantitative evaluation on Refer-YouTube-VOS val set, with region similarity J , boundary accuracy F , average of J&F .

Success percentage (prec@X) is also reported.

ring expressions. It includes 90 videos, which are fur-

ther split into two subsets: training set (60 videos), val set

(30 videos). Refer-YouTube-VOS is a large-scale dataset,

which includes 3,975 videos from YouTube-VOS [54] and

27,899 corresponding language descriptions. Similar to

Refer-DAVIS17, this dataset contains two subsets: training

set and val set. Although both provide the full-video expres-

sion based on an entire video and the first-frame expression

based on the first frame, we only use their full-video expres-

sion for training and validation.

Evaluation Metrics. Following the standard evaluation

protocol [43], we adopt the region similarity J (%), con-

tour accuracy F (%), and Precision@X (%) as our evalu-

ation metrics. The region similarity J calculates the mean

IoU between the prediction and ground truth, while the con-

tour accuracy F measures the similarity between the bound-

ary of the prediction and the ground truth. Precision@X

(prec@X ) denotes the percentage of testing samples whose

region similarity is higher than a predefined threshold X ,

where X is sampled from the range [0.5, 0.9].

4.2. Quantitative Results

We compare our approach with several previous mod-

els on the two aforementioned challenging benchmarks.

Baseline is a frame-based method proposed in [43], which

employs a cross-modal attention module [56] for vision-

language understanding, and a feature pyramid decoder for

mask prediction. Baseline+RNN [43] denotes a variant of

baseline, which utilizes a GRU layer to visual features from

multiple input frames for estimation of masks. URVOS [43]

builds on frame-level interaction, which unifies a memory

network to replay previous frames and masks for refining

the mask prediction of the current frame. RefVOS [1] is a

simple frame-based modeling method, which directly con-

ducts element-wise multiplication between visual and lin-

guistic features to obtain the cross-modal representation.

Refer-DAVIS17 val set. Before training on Refer-DAVIS17,

we pre-train our model on the large-scale Refer-YouTube-

VOS training set, and test its performance on the Refer-

DAVIS17 val set. As reported in Table 1, our approach

has a remarkable performance improvement compared to

the most recent model URVOS under the same ‘pretraining

only’ case (J : +5.8%, F : +6.0%). After fine-tuning the

pretrained model on the Refer-DAVIS17 training set, our

approach largely outperforms all the comparative methods

across all metrics (J :+6.6%, F :+6.1% compared with UR-

VOS). Besides, we also provide the results of our model

pre-trained on RefCOCO [37], a referring image segmen-

tation benchmark, which achieves higher scores than these

frame-based methods, like URVOS [43] and RefVOS [1].

Refer-YouTube-VOS val set. We further examine the per-

formance of the proposed approach on the Refer-YouTube-

VOS val. We directly test the model trained on the Refer-

YouTube-VOS training set. As seen in Table 2, our model

significantly outperforms all the state-of-the-art methods in

all metrics. Compared to URVOS [43], we improve the re-

gion similarity J by +3.1% and the contour accuracy F by

+1.8%. Our method obtains a much higher score on preci-

sion@X (e.g., prec@0.8:+5.0%, prec@0.9:+4.8%). All the

results indicate the superiority of our multi-level represen-

tation learning with semantic alignment.



Query: A girl on the left holding two cell phones

Query: A blue wooden car

Query:  A person wearing white shorts and a red shirt is on the opposite side of the tennis court

Query: A person wearing black shorts and a blue shirt is hitting a tennis ball on the tennis court
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Figure 4. Qualitative results on Refer-DAVIS17 val and Refer-YouTube-VOS val set. The first four sequences represent the referring

video object segmentation results. The last two sequences are object-level results with respect to the salient object prediction (Eq. 6).

4.3. Qualitative Results

Fig. 4 shows some typical visual results of our approach.

In the first sequence (i.e., lab-coat), camera movement

brings size deformation for the girl. In the second sequence

(i.e., soapbox), the blue wooden car moves forward, which

has difficulty in boundary estimation due to the consider-

able appearance variation. The third and fourth sequences

come from the same video (i.e., 6031809500) but are more

challenging due to local occlusion and visually similar ob-

jects in the background. Otherwise, our model succeeds in

segmenting all the referent objects. Overall, benefiting from

taking the multi-level embedding into account during the

vision-language understanding, our model yields remark-

able referring video object segmentation results.

In addition to the referring video object segmentation re-

sults, we also provide some object prediction results from

object-level embedding in Fig. 4. It is well seen that all the

objects are predicted with sharp boundaries, including the

occluded and small ones, indicating that the object-aware

feature maps can guide the generation of the salient object

and provide object prior.

4.4. Ablation Studies

To analyze the effect of each component in our model,

we conduct ablative studies on two benchmarks. Table 3

and Table 4 tabulate the results.

Multi-Level Analysis. To investigate our multi-level rep-

resentation, we separately analyze video, frame, and ob-

ject embedding in Table 3. As seen, by dropping the video

embedding, the model encounters a performance drop (J :-

2.2%, F :-1.9%). A similar trend is observed after discard-

ing another two modules, thereby demonstrating the effec-

tiveness of the multi-level representations. Moreover, we

test two different variants of the object encoder, i.e., FCN or

frame-level encoder. But both two have lower scores than

video-level encoder (i.e., the full model).

Fig. 5 shows the ablative qualitative results by adding

frame, video, object embedding one by one. The simple

frame-level modeling cannot identify the moving and oc-

cluded objects accurately. Using video-level and object-

level embedding can promote performance by learning the

long-temporal information and shifting more attention.

Importance of Semantic Alignment. DSA is a key mod-

ule in our method to achieve cross-modal understanding.



+ Video Embedding + Object EmbeddingFrame Embedding -  Alignment

ID1: A deer in the woods ID2: A hand grabbing a deer

Image

Figure 5. Qualitative results about ablation studies on Refer-YouTube-VOS. The video and object embedding is added into the frame

embedding model one by one. Note that ‘-Alignment’ is removed from the full model, with the same annotations for two objects.

Aspect Variants J F

Full Model - 48.43 50.96

Multi-Level
Visual Representation

w/o video level 46.25 49.04

w/o frame level 47.09 49.58

w/o object level 46.95 49.10

Object Encoder
FCN 47.24 49.65

frame encoder 47.56 50.04

Semantic Alignment w/o alignment 36.23 40.40

Numbers of
Frames

1 46.12 48.90

2 46.80 49.24

4 47.47 49.83

8 48.11 50.41

Table 3. Ablation studies on Refer-YouTube-VOS val set, with

region similarity J , boundary accuracy F .

From Table 3, we can see that removing semantic alignment

from our full model brings a considerable performance drop

across all metrics (J :-12.2%, F :-10.6%). Fig. 5 clearly

shows that semantic alignment plays an important role in

identifying different objects.

Number of Frames. We also study the influence of dif-

ferent numbers of video frames on the final performance

in Table 3. Better performance can be obtained with more

input frames (e.g.,1 → 8). This observation indicates that

the long-temporal modeling can mine cross-frame relation-

ships to facilitate referring video segmentation. Due to the

computation and memory limitation, we set the maximum

number to 12 in our full model.

Mask Propagation Method. Next, we experiment several

state-of-the-art mask propagation methods in Table 4, such

as STM [38], CFBI+ [55], STCN [4], where STCN brings

more refinement improvements. Further, we can observe

that the performance gain is 3.9% and 3.5% in J and F , re-

spectively. It is worth noticing that our model without mask

propagation still achieves better performance in comparison

to the state-of-art URVOS (J :+2.7%, F :+0.6%).

Inference Speed. Finally, we calculate the inference speed

on a NVIDIA Tesla V100 GPU using the entire Refer-

Method Propagation J F J&F FPS

URVOS
– 39.43 45.87 42.65 -

STM [38] ICCV19 47.29 55.96 51.45 -

Ours

– 49.96 56.53 53.25 53.2

STM [38] ICCV19 51.02 58.65 54.84 5.59

CFBI+ [55] PAMI21 52.39 59.37 55.88 5.01

STCN [4] NeurIPS21 53.85 62.02 57.94 17.2

Table 4. Ablation studies about mask propagation on Refer-

DAVIS17 val set, with region similarity J , boundary accuracy F ,

average of J&F . Inference speed (FPS) is also reported.

DAVIS17 val set. The input images are tested with size of

432×240, and Table 4 shows all FPS results. Our multi-

grained model processes all input frames in a parallel way,

which demonstrates the speed superiority at 53.2 FPS. The

speed of the full model with STCN [4] outperforms other

methods with significant 3× margins and achieves 17.2

FPS. All the results indicate that our model is an efficient

framework with a high inference speed.

5. Conclusion

In this paper, we proposed a novel multi-level representa-

tion learning framework to address RVOS task. We started

with the observation that most RVOS methods rely heav-

ily on frame-level modeling and omit the structural infor-

mation of video content, leading to poor vision-language

matching. Based on this motivation, we proposed to em-

bed video-, frame-, and object-level semantics to provide

a robust and informative visual representation. Afterward,

to distinguish the referent object, we introduced dynamic

semantic alignment for adaptively fusing two modalities.

The boundary-aware segmentation integrated the generated

target-aware feature and boundary information to predict

the final results. Experiments show that our method out-

performs previous methods by large margins on both Refer-

DAVIS17 and Refer-YouTube-VOS.
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beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017

davis challenge on video object segmentation. arXiv preprint

arXiv:1704.00675, 2017. 5

[42] Tao Ruan, Ting Liu, Zilong Huang, Yunchao Wei, Shikui

Wei, and Yao Zhao. Devil in the details: Towards accurate

single and multiple human parsing. In AAAI, 2019. 5

[43] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Urvos:

Unified referring video object segmentation network with a

large-scale benchmark. In ECCV, 2020. 1, 2, 4, 5, 6

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017. 4

[45] Hao Wang, Cheng Deng, Fan Ma, and Yi Yang. Context

modulated dynamic networks for actor and action video seg-

mentation with language queries. In AAAI, 2020. 2

[46] Hao Wang, Cheng Deng, Junchi Yan, and Dacheng Tao.

Asymmetric cross-guided attention network for actor and ac-

tion video segmentation from natural language query. In

CVPR, 2019. 2

[47] Wenguan Wang, Jianbing Shen, Xiankai Lu, Steven CH Hoi,

and Haibin Ling. Paying attention to video object pattern

understanding. IEEE TPAMI, 2020. 2

[48] Wenguan Wang, Jianbing Shen, Jianwen Xie, Ming-Ming

Cheng, Haibin Ling, and Ali Borji. Revisiting video saliency

prediction in the deep learning era. IEEE TPAMI, 2019. 2

[49] Wenguan Wang, Tianfei Zhou, Fatih Porikli, David Crandall,

and Luc Van Gool. A survey on deep learning technique for

video segmentation. IEEE TPAMI, 2021. 1, 2

[50] Xiaohan Wang, Linchao Zhu, and Yi Yang. T2vlad: global-

local sequence alignment for text-video retrieval. In CVPR,

2021. 3

[51] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen,

Baoshan Cheng, Hao Shen, and Huaxia Xia. End-to-end

video instance segmentation with transformers. In CVPR,

2021. 3, 4

[52] Dongming Wu, Mang Ye, Gaojie Lin, Xin Gao, and Jian-

bing Shen. Person re-identification by context-aware part

attention and multi-head collaborative learning. IEEE TIFS,

2021. 2

[53] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Shengping

Zhang, and Wenxiu Sun. Efficient regional memory network

for video object segmentation. In CVPR, 2021. 1

[54] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang,

Dingcheng Yue, Yuchen Liang, Brian Price, Scott Cohen,

and Thomas Huang. Youtube-vos: Sequence-to-sequence

video object segmentation. In ECCV, 2018. 1, 2, 6

[55] Zongxin Yang, Yunchao Wei, and Yi Yang. Collabora-

tive video object segmentation by multi-scale foreground-

background integration. IEEE TPAMI, 2021. 8

[56] Linwei Ye, Mrigank Rochan, Zhi Liu, and Yang Wang.

Cross-modal self-attention network for referring image seg-

mentation. In CVPR, 2019. 1, 2, 4, 6

[57] Linwei Ye, Mrigank Rochan, Zhi Liu, Xiaoqin Zhang, and

Yang Wang. Referring segmentation in images and videos

with cross-modal self-attention network. IEEE TPAMI,

2021. 2

[58] Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu,

Mohit Bansal, and Tamara L Berg. Mattnet: Modular at-

tention network for referring expression comprehension. In

CVPR, 2018. 1, 2

[59] Runhao Zeng, Haoming Xu, Wenbing Huang, Peihao Chen,

Mingkui Tan, and Chuang Gan. Dense regression network

for video grounding. In CVPR, 2020. 3

[60] Yuting Zhang, Luyao Yuan, Yijie Guo, Zhiyuan He, I-An

Huang, and Honglak Lee. Discriminative bimodal networks

for visual localization and detection with natural language

queries. In CVPR, 2017. 1, 2

[61] Tianfei Zhou, Jianwu Li, Shunzhou Wang, Ran Tao, and

Jianbing Shen. Matnet: Motion-attentive transition network

for zero-shot video object segmentation. IEEE TIP, 2020. 2


