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Abstract—Self-attention (SA) based networks have achieved
great success in image captioning, constantly dominating the
leaderboards of online benchmarks. However, existing SA net-
works still suffer from distance insensitivity and low-rank
bottleneck. In this paper, we aim to optimize SA in terms
of two aspects, thereby addressing the above issues. First,
we introduce a Distance-sensitive Self-Attention (DSA), which
considers the raw geometric distances between query-key pairs
in the 2D images during SA modeling. Second, we present a
simple yet effective approach, named Multi-branch Self-Attention
(MSA) to compensate for the low-rank bottleneck. MSA treats
a multi-head self-attention layer as a branch and duplicates
it multiple times to increase the expressive power of SA. To
validate the effectiveness of the two designs, we apply them
to the standard self-attention network, and conduct extensive
experiments on the highly competitive MS-COCO dataset. We
achieve new state-of-the-art performance on both the local and
online test sets, i.e., 135.1% CIDEr on the Karpathy split and
135.4% CIDEr on the official online split. The source codes and
trained models for all our experiments are publicly available at
https://github.com/Young499/image-captioning-MDSANet.

Index Terms—Image Captioning, Multi-Branch Techniques,
Distance-Sensitive Positional Embedding

I. INTRODUCTION

IMAGE captioning aims to automatically translate an image
into a natural language description [1]–[4], which is of

great importance in enabling computers to understand images.
In addition to recognizing the objects in an image, an image
captioning model should also be able to analyze their state
and relationships, and then translate this information into
a natural language sentence [5]–[7]. Most successful image
captioning approaches adopt the encoder-decoder framework
[8]–[11], which is inspired by the sequence-to-sequence model
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for machine translation [12], [13]. The encoder transforms an
image into intermediate representations, and is immediately
followed by a decoder that generates a descriptive sentence.
Recently, the Transformer [14] and its variants have gained
widespread popularity in image captioning, and dominated the
leaderboards as the de facto standard [10], [11]. Despite the
great success of these self-attention (SA) networks, there are
two key issues left unexplored.

Firstly, existing SA networks still fail to model the geo-
metric distances between visual instances, which is critical
for visual content understanding. In a standard SA module,
information on the spatial orders and distances of objects is
typically ignored. Some recent works have tried to address the
loss of spatial information by introducing position embedding
methods, i.e., absolute positional encoding [15] and relative
positional encoding [16], [17]. However, these embeddings are
usually unable to maintain precise information of geometric
object distances in the image, which are insufficient for mod-
eling the relations of objects and reasoning complex scenes.

Secondly, existing SA networks also suffer from a low-
rank bottleneck [18]. Specifically, to extend the capacity of
exploring subspaces, the self-attention has multiple heads, i.e.,
it is a multi-head self-attention (MHA). To ensure that the
number of parameters in the attention layer stays unchanged
irrespective of the amount of heads, dimensionality reduction
is used in the input projections. Thus, increasing the number of
heads reduces the head size. This in turn limits the expressivity
of individual heads, leading an information bottleneck [18],
[19]. An intuitive solution to this problem is to increase the
embedding size of multiple heads. However, this will greatly
increase the number of parameters and make it difficult to
optimize the deep network.

To address the above two issues, we introduce two effective
designs, namely Distance-sensitive Self-Attention (DSA) and
Multi-branch Self-Attention (MSA). For the issue of geometric
distance modeling, DSA uses the distance information to guide
the self-attention modeling. Specifically, in DSA, the spatial
distance of each query-key pair is transformed into a scalar by
a dynamic sigmoid function, whose value can directly reflect
the geometric distance between the key and the query. Notably,
this sigmoid function can dynamically determine the proper
range of the scalar. Then, the scalar is used to adjust the
corresponding raw attention weights. To tackle the information
bottleneck, MSA is employed to duplicate the MHA several
times, averaging the outputs. With such a simple operation,
the shortcomings of self-attention on small subspaces can be
compensated for by iterative modeling, thereby improving the
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expressive power of SA networks.
These two designs are further combined as an enhanced SA

module. We build a new image captioning model called the
Multi-branch Distance-sensitive Self-Attention Network (MD-
SAN) by integrating the new SA module into a classical
Transformer structure [14]. Extensive experiments on MS-
COCO are conducted to validate the effectiveness of MD-
SAN, as well as the two newly proposed designs. Notably,
our MD-SAN establishes a new state-of-the-art on the MS-
COCO evaluation sever, improving the best result in terms
of CIDEr from 134.0% to 135.4% on the official online test
split. To examine the generalization ability of DSA and MSA,
we also apply them to the Transformer networks of two other
multimodal tasks, i.e., Visual Question Answering (VQA) [20]
and Visual Grounding (VG) [21], and conduct experiments on
the VQA-v2 [22], RefCOCO, RefCOCO+, and RefCOCOg
[23] datasets. When integrated into the strong Transformer-
based baselines, our method can consistently increase their
accuracies on various tasks with negligible extra computational
cost.

To summarize, the contributions of this paper are three-fold:
• We propose a distance-sensitive self-attention approach

which explicitly models the real distances between ob-
jects in an image to improve scene understanding.

• We introduce a multi-branch self-attention to break the
low-rank bottleneck and increase the expressive power
of the multi-head SA.

• By combining the DSA and MSA and applying them to
the self-attention network, we establish a new state-of-
the-art on the MS-COCO image captioning benchmark.
Further experiments on visual question answering and
visual grounding tasks verify the generalization of our
method.

II. RELATED WORK

A. Image Captioning

Inspired by the encoder-decoder framework in machine
translation [12], [13], most existing image captioning ap-
proaches adopt the CNN-RNN architectures [1], [2]. Recently,
a variety of improved models [24]–[30] have been proposed
using attention [31] and Reinforcement Learning (RL) based
training objectives [32]. Xu et al. [31] introduced soft and
hard attention mechanisms to automatically focus on salient
objects when generating each word by mimicking the human
visual system. Lu et al. [33] proposed an adaptive attention
mechanism with a visual sentinel determining whether to
attend to the image. Anderson et al. [8] introduced an object
detector to identify salient image regions (objects) and extract
a feature vector for each object, which is then fed into the
decoder for caption generation. Rennie et al. [32] explored
reinforcement learning with a self-critical reward for model
training. At the same time, some GNN-based methods [34]
have been introduced to the image captioning task. Yao et al.
[24] used a graph convolutional neural network to integrate
semantic and spatial relationships between objects, aiming to
further improve the encoding of objects and their relationships.
Yang et al. [25] utilized graph convolution to incorporate scene

graph into the encoder-decoder image captioning framework.
Despite their wide adoption, RNN-based models suffer from
limited representation power and a sequential nature.

B. Transformers in Image Captioning

Recently, Vaswani et al. [14] showed that solely using
the Transformer model can achieve state-of-the-art results for
machine translation. Other recent approaches have explored
the use of Transformers in vision-language tasks. For instance,
Huang et al. [9] introduced a Transformer-like encoder to
encode regions into hidden states, which was paired with
an LSTM decoder. Futher, Herdade et al. [10], [11], [16],
[17], [26] proposed to replace conventional RNNs with the
Transformer architecture, achieving new state-of-the-art per-
formances. Along the same line, Li et al. [35], [36] used a
Transformer to integrate both visual information and additional
semantic concepts given by an external tagger. Herdade et
al. [16], [17] incorporated geometry relationships between
region features into the Transformer architecture by leveraging
relative positional encoding for captioning. Luo et al. [15]
adopted both relative positional encoding and absolute posi-
tional encoding to enhance the visual feature representations.
However, none of these models explicitly model real distances,
which is important for understanding the relations between
objects and reasoning visual scenes.

C. Position Representation

There are mainly two classes of methods for position
representation: absolute position encoding and relative position
encoding. The absolute ones [14], [15] encode the absolute
position of the input tokens from 1 to the maximum sequence
length and each position has a corresponding embedding. The
relative ones [15]–[17] transform the relative position between
input tokens into the high-dimensional vectors and learns the
pairwise relationship between tokens. Both methods map the
absolute position or relative position to the high-dimensional
space through the learnable embedding vectors. The process is
black-boxed, and the distance information is not interpretable.
Thus, both of them may not be optimal for modeling distance
information because they usually cannot keep the precise
information of token distances. A core innovation of our
paper is that we directly use the distance information as
a priori information and map it into a real number via a
monotonic function to revise the attention weights. Then the
model independently chooses whether to focus on short-range
features or long-range features.

D. Multi-Branch Techniques

Each block of the multi-branch architecture of a neural
network consists of more than one parallel component. Typical
structures in computer vision include the inception architec-
tures [37], ResNet [38], ResNeXt [39], and DenseNet [40].
In natural language process, bi-directional LSTM [41] models
can be regarded as a two-branch architecture, also benefitting
from the multi-branch technique.
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Fig. 1. Overview of our proposed Multi-branch Distance-sensitive Self-Attention Network (MD-SAN) for image captioning. A set of visual features A and
geometry features R are first fed into the encoder, which are then adaptively fused into the decoder to generate a caption. For the first layer, the input X = A.
Note that the residual connections, layer normalizations, and embedding layers are omitted for simplicity.

III. PRELIMINARIES

The Transformer model consists of an encoder and a de-
coder, both of which have a stack of layers. We first present
a core component of the Transformer, called the multi-head
self-attention, which has h attention heads with independent
parameters. For the i-th attention head, the independent head
projection matrices WQ

i ,W
K
i ,W

V
i ∈ Rd× d

h are used to
transform the input X ∈ RN×d into queries Qi, keys Ki and
values Vi, which are defined as:

Qi = XWQ
i ,Ki = XWK

i , Vi = XWV
i . (1)

The attention weight matrix Ωi between any queries and keys
for the i-th head are computed as

Ei =
QiK

T
i√
d
,Ωi = softmax (Ei) , (2)

where
√
d is a scaling factor. The output of the head is then

calculated as

Hi = Attention (Qi,Ki, Vi) = ΩiVi. (3)

Next the outputs of the h attention heads are concatenated
together and the final output is a linear projection of the
concatenated representations, which is represented as:

O′ = MultiHead(Q,K, V ) = Concat (H1, . . . ,Hh)WO.
(4)

This is then followed by a residual connection and a layer
normalization:

O = LayerNorm(X +O′). (5)

Note that the residual connection helps avoid the vanishing
gradient problem in the training phase. Then, a final feed-
forward network (FFN) is adopted for additional processing
of the outputs, which is also followed by another residual
connection and layer normalization [14].

IV. OUR METHOD

Given an image I , the captioning model needs to generate
a word sequence YT = {y0, · · · , yT }, yt ∈ D, where D
is the vocabulary dictionary and T is the sequence length.
The image is represented as a group of visual features A =
{a1, a2, · · · , aN} extracted from a pre-trained object detector,
where N is the number of visual features, and ai ∈ Rd.
As shown in Fig. 1, we adopt a variant of the Transformer
architecture for image captioning. In particular, we propose
a novel MD-SAN based encoder to extract accurate internal
relationships between features and increase the expressiveness.
The decoder then uses the generated features from the last
encoder layer as input to generate the caption, which is
identical to the original Transformer implementation [14].

A. Distance-Sensitive Self-Attention (DSA)

In this section, we first introduce our proposed distance-
sensitive self-attention, which can effectively leverage the real
distance information between objects in an image to enhance
the internal relation modeling.

Herdade et al. [16], [17] proposed to embed the relative
positions to high-dimensional representations, which are then
projected to scalar scores to directly modify the attention
weight matrix Ωi in Eq. 2. Such a process is an uncontrollable
blind box, and thus cannot capture the precise distances. We
incorporate the real distance information by directly modifying
the attention weight matrix Ωi in Eq. 2. Thus, we map the
real distances into the re-scaled coefficients via a monotonic
function that is suitable for adjusting the self-attention weights.
The coefficients can reflect the real distances. For the input
X ∈ RN×d, we denote the geometry features of the m-th and
n-th vectors as (xm, ym) and (xn, yn), respectively. Note that
the geometry features are center coordinates for region features
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[8]; for grid features [42], they are the 2D indexes. We use
the Manhattan distance to compute the relative distance Rm,n
between the m-th and n-th vectors, i.e.,

Rm,n = |xn − xm|+ |yn − ym|. (6)

With Eq. 6, we obtain the relative distance matrices R ∈
RN×N . Then we exploit a monotonic function to project them
into the re-scaled coefficients, the scale of which needs to be
tunable. Thus, we adopt the dynamic sigmoid function [43] as
follows:

Ri = σd(R) =
1 + exp(vi)

1 + exp(vi − wiR)
, (7)

where wi and vi are two learnable parameters. The range of
the dynamic sigmoid depends on vi. Finally, Ri is used to
adjust the raw attention weights as follows:

Ei = ReLU(
QiK

T
i√
d

) ∗Ri,Ωi = softmax (Ei) , (8)

where ∗ represents an element-wise product, and the subscript
i denotes the i-th head. Besides, we notice that the raw
attention weight matrix has both positive and negative values,
which may make the influence of distance oscillate, resulting
in invalidity. To continuously reflect the influence of distance
information, following Wang et al. [43], we add the ReLU
activation function to the attention weights to keep them non-
negative.

B. Multi-Branch Self-Attention (MSA)

As demonstrated by earlier works [18], [19], multi-head
self-attention suffers from a low-rank bottleneck, resulting
from the decrease in head size. A natural way to address this is
to increase the embedding size of the different heads. However,
this will greatly increase the number of parameters and make
it difficult to optimize the deep network.

In this paper, we present a simple yet effective approach,
i.e., the multi-branch self-attention, to break the bottleneck.
The multi-branch technique is one of the keys to the success
of deep neural models and has been well studied in computer
vision [38]–[40] and natural language processing [41]. Fol-
lowing this premise, we treat a multi-head attention layer as
a branch and duplicate it multiple times [44], as follows:

MSA(Q,K, V ) =
1

M

M∑
j=1

MultiHead(j)(Q(j),K(j), V (j)), (9)

where M is the number of branches, and the superscript j de-
notes the j-th branch. Motivated by [44], [45], we leverage the
drop branch technique during training to avoid co-adaptation
among different branches. Thus, each branch has a certain
probability of being randomly erased. Eq. 9 is redefined as
follows:

β(j) =
I{Uj ≥ ρ}

1− ρ
, (10)

MSA(Q,K, V ) =
1

M

M∑
j=1

β(j)MultiHead(j)(Q(j),K(j), V (j)),

(11)
where I is the indicator function, Uj is a uniformly sampled

value from [0, 1] and the ρ ∈ [0, 1] is drop rate. To make

the expectation of β(j) equal to 1, we use 1− ρ to revise the
sampled results. Note that β(j) = 1 during the inference phase.

The effect of MSA. We theoretically analyze how MSA
solves the low-rank bottleneck. We make the following deriva-
tion from Eq. 9:

MSA(Q,K, V ) =
1

M

M∑
j=1

MultiHead
(j)

(Q
(j)
, K

(j)
, V

(j)
)

=
1

M

M∑
j=1

Concat(H
(j)
1 , · · · , H(j)

h )W
O(j)

=
1

M

M∑
j=1

[H
(j)
1 ; · · · ;H(j)

h ][(W
O(j)

1 )
T
; · · · ; (WO(j)

h )
T
]
T

=
1

M

M∑
j=1

(H
(j)
1 W

O(j)

1 + · · ·+H
(j)
h W

O(j)

h )

=
1

M

M∑
j=1

H
(j)
1 W

O(j)

1 + · · ·+
1

M

M∑
j=1

H
(j)
h W

O(j)

h ,

(12)

where the second equation is the multi-branch version of Eq.
4. The third equation is the block representation of matrices,
where H

(j)
i ∈ RN× d

h , WO(j)

i ∈ R d
h×d. Finally, each term

in the last equation is the sum of the projections of a head.
These summation terms can be seen as simple ensembles of
relatively shallow layers [46], which can greatly improve the
representation ability of each head, thereby effectively solving
the low-rank bottleneck. Thus the essence of the multi-branch
mechanism is to strengthen the representation of each head.

C. Applying DSA and MSA to MHA

We combine both DSA and MSA to replace the standard
multi-head self-attention. In the encoder, we first use DSA to
replace the original SA, and then we replace the single-branch
MHA with our proposed multi-branch distance-sensitive self-
attention. Note that the decoder is identical to the original
Transformer implementation [14].

D. Training

For a given caption YT = {y0, · · · , yT }, the distribution is
calculated as the product of the conditional distributions at all
time steps:

pl(Y ) =

T∏
t=0

p(yt|Yt−1). (13)

The training process consists of two phases, pre-training by
supervised learning and fine-tuning by reinforcement learning.
Let θ be the parameters of the model. During pre-training,
given a target ground truth sequence Y ∗ = {y∗0 , · · · , y∗T }, the
objective is to minimize the cross-entropy (CE) loss:

LCE(θ) = −
T∑
t=0

log
(
p(y∗t |Y ∗t−1)

)
. (14)

In the fine-tuning stage, we employ a variant of the self-
critical sequence training approach [32] on sequences sampled
using beam search to directly optimize the metric, following
previous works [8], [32]. The objective is to minimize the
negative expected relative score:

LR(θ) = −Ey∼pl
[
r(Y s)

]
, (15)
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where Y s = {ys0, · · · , ysT } is a sequence sampled through the
beam search, and r(·) can be any reward metric. We use the
CIDEr-D score as the reward. The final gradient of LR(θ) for
one sample is calculated as:

∇θLR(θ) = −1

k

k∑
i=1

((
r
(
Y i
)
− b
)
∇θ log p

(
Y i
))
, (16)

where Y i = {yi0, · · · , yiT } is the i-th sentence in the beam,
and b =

(∑
i r
(
Y i
))
/k is the baseline, computed as the mean

of the rewards obtained by the k sampled sequences.

V. EXPERIMENTS

A. Dataset and Implementation Details

All experiments are conducted on the most popular bench-
mark for image captioning, MS COCO [47]. The official
dataset of the MSCOCO contains 123,287 images, which
includes 82,783 training images, 40,504 validation images, and
40,775 testing images. We use both offline and online evalua-
tion to verify our proposed model. Each image is equipped
with five ground-truth sentences. The online evaluation is
done on the MS COCO test split, for which ground-truth
annotations are not publicly available. In offline testing, we
use the Karpathy splits [2] that have been used extensively for
reporting results in previous works. This split contains 113,287
training images, and 5K images respectively for validation and
testing.

To better verify the validity of MD-SAN, two kinds of
features are used to conduct extensive experiments: (1) Grid
features. To represent them, we follow [15], [42] and use
Faster R-CNN [48] with ResNeXt-101 [39] to extract grid
features. (2) Region features. We use the region features
provided by Bottom-Up [8] for training.

In our model, we set the dimensionality d of each layer to
512, the number of heads to 8 in each branch, and the number
of branchs M to 3, respectively. We employ dropout with a
keep probability of 0.9 after each attention and feed-forward
layer. Pre-training with cross entropy is done following the
learning rate scheduling strategy with a warmup of 10, 000
iterations. Then, during CIDEr-D optimization, we use a fixed
learning rate of 5×10−6. We train all models using the Adam
optimizer [49], a batch size of 50, and a beam size of 5. During
the inference stage, we adopt the beam search strategy and set
the beam size to 3.

B. Metrics

Five evaluation metrics, BLEU [50], METEOR [51],
ROUGE-L [52], CIDEr [53], and SPICE [54], are simul-
taneously utilized to evaluate our model. The most classic
metrics for image captioning are based on n-gram similarity
of reference sentences and generated descriptions, i.e., BLEU
[50], METEOR [51], ROUGE-L [52], and CIDEr [53]. BLEU
is a modified form of precision to compare the generated
captions against multiple reference sentences, the number of
which is between 0 and 1. METEOR is based on the harmonic
mean of unigram precision and recall of exact, stem, synonym,
and paraphrase matches between sentences. ROUGE-L is a

TABLE I
COMPARISON WITH THE STATE OF THE ARTS ON THE “KARPATHY” TEST
SPLIT, IN THE SINGLE-MODEL SETTING. B-N, M, R, C AND S ARE SHORT

FOR BLEU-N, METEOR, ROUGE-L, CIDER AND SPICE SCORES,
RESPECTIVELY, ALL VALUES OF WHICH ARE REPORTED AS PERCENTAGES

(%). PARAMS REPRESENTS THE PARAMETER SIZE OF THE MODEL.

Model B-1 B-4 M R C S Params
Region features (ResNet-101)

SCST [32] - 34.2 26.7 55.7 114.0 - -
Up-Down [8] 79.8 36.3 27.7 56.9 120.1 21.4 -
RFNet [55] 79.1 36.5 27.7 57.3 121.9 21.2 -
GCN-LSTM [24] 80.5 38.2 28.5 58.3 127.6 22.0 -
SGAE [25] 80.8 38.4 28.4 58.6 127.8 22.1 -
ETA [35] 81.5 39.3 28.8 58.9 126.6 22.7 -
AoANet [9] 80.2 38.9 29.2 58.8 129.8 22.4 -
ORT [16] 80.5 38.6 28.7 58.4 128.3 22.6 -
Transformer [14] 80.4 38.3 29.0 58.2 129.5 22.5 33.6M
MMTransformer [11] 80.8 39.1 29.2 58.6 131.2 22.6 38.3M
XTransformer [10] 80.9 39.7 29.5 59.1 132.8 23.4 138.3M
Ours 81.1 39.5 29.4 59.2 133.5 23.1 39.9M

Grid features (ResNext-101)
Up-Down [8] 75.0 37.3 28.1 57.9 123.8 21.6 -
AoANet [9] 80.8 39.1 29.1 59.1 130.3 22.7 -
Transformer [14] 80.9 38.9 29.0 58.5 131.2 22.7 33.6M
MMTransformer [11] 80.8 38.9 29.1 58.5 131.8 22.7 38.3M
XTransformer [10] 81.0 39.7 29.4 58.9 132.5 23.1 138.3M
RSTNet [56] 81.1 39.3 29.4 58.8 133.3 23.0 -
Ours 81.5 39.8 29.6 59.1 135.1 23.2 39.9M

TABLE II
COMPARISON WITH THE STATE OF THE ARTS ON THE “KARPATHY” TEST
SPLIT, USING THE ENSEMBLE TECHNIQUE, WHERE B-N, M, R, C AND S
ARE SHORT FOR BLEU-N, METEOR, ROUGE-L, CIDER AND SPICE
SCORES, RESPECTIVELY. ALL VALUES ARE REPORTED AS PERCENTAGES

(%).

Model B-1 B-4 M R C S
Ensemble/Fusion of 2 models

GCN-LSTM [24] 80.9 38.3 28.6 58.5 128.7 22.1
SGAE [25] 81.0 39.0 28.4 58.9 129.1 22.2
ETA [35] 81.5 39.9 28.9 59.0 127.6 22.6
GCN-LSTM+HIP [57] - 39.1 28.9 59.2 130.6 22.3
MMTransformer [11] 81.6 39.8 29.5 59.2 133.2 23.1
Ours 82.2 40.5 29.7 59.6 136.9 23.3

Ensemble/Fusion of 4 models
SCST [32] - 35.4 27.1 56.6 117.5 -
RFNet [55] 80.4 37.9 28.3 58.3 125.7 21.7
AoANet [9] 81.6 40.2 29.3 59.4 132.0 22.8
MMTransformer [11] 82.0 40.5 29.7 59.5 134.5 23.5
Ours 82.3 40.9 29.8 59.7 137.8 23.7

set of automated evaluation criteria designed to evaluate text
summarization algorithms. CIDEr represents the sentences in
the form of a Term Frequency Inverse Document Frequency
(TF-IDF) vector, and then calculates the cosine similarity of
the reference description to the description generated by the
model. Besides, SPICE [54] is a semantic evaluation metric for
image caption that measures how image captions effectively
recover objects, attributes, and relationships between them,
which is better able to capture human judgments about the
model’s subtitles.

C. Baselines

The baseline models we compare include SCST [32],
LSTM-A [58], Up-Down [8], RFNet [55], GCN-LSTM [24],
SGAE [25], ETA [35], AoANet [9], ORT [16], MMTrans-
former [11], XTransformer [10], and RSTNet [56].
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Transformer: Two blue buses parked on the side of a street.
Ours: A tow truck towing a bus down a street.

GT1: Blue and white tow truck pulling a blue bus behind it. 
GT2: The large tow truck is carrying a city bus on the back.
GT3: A truck is towing a bus on a busy street.

Transformer: A red car is parked next to a fire hydrant.
Ours: A red white and blue fire hydrant on a city street.

GT1: A red white and blue fire hydrant on the sidewalk.
GT2: A red white and blue fire hydrant at the curb
GT3: A red, white and blue fire hydrant sitting on the side of a road.

Transformer: A group of people playing baseball in a field.
Ours: A man swinging a baseball bat at a ball.

GT1: A man in a field about to swing at a ball with a bat.
GT2: A man attempting to swing a bat at a ball.
GT3: A man taking a swing at a baseball on a field.

Transformer: Two women brushing their teeth in a bathroom sink.
Ours: A woman brushing her teeth in a bathroom sink.

GT1: A beautiful young lady brushing her teeth in front of a mirror.
GT2: A woman at the bathroom sink brushing her teeth.
GT3: A young woman is brushing her teeth at the sink.

Transformer: An orange cat sitting under a park bench.
Ours: An orange cat sitting on the steps.

GT1: A cat is sitting in front of some steps. 
GT2: A cat that is sitting on some steps.
GT3: A cat sits on the steps as another climbs up.

Transformer: A dog playing with a yellow frisbee in the snow.
Ours: Two dogs playing with a yellow frisbee in the snow.

GT1: Two dogs on the snow playing frisbee together. 
GT2: Two dogs fighting over a Frisbee in the snow.
GT3: A couple of dogs fighting over a frisbee.

Transformer: Two people sitting on a yellow motorcycle. 
Ours: Two people standing in a river with a yellow boat.

GT1: A man carrying a small child above flooding waters.
GT2: A man holding a child wading through muddy flood water.
GT3: A man walking through a muddy river holding a child.

Fig. 2. Examples of captions generated by our approach and the standard Transformer model. Some accurate words are marked in blue, while wrong and
inaccurate words are marked in red. Our method yields more accurate descriptions.

TABLE III
MSCOCO ONLINE EVALUATION. ALL VALUES ARE REPORTED AS PERCENTAGES (%), WITH THE HIGHEST VALUE OF EACH ENTRY HIGHLIGHTED IN

BOLDFACE.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
Metric c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40
SCST [32] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.0
LSTM-A [58] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0
Up-Down [8] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
RFNet [55] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1
GCN-LSTM [24] - - 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
SGAE [25] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
AoANet [9] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
ETA [35] 81.2 95.0 65.5 89.0 50.9 80.4 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4
MMTransformer [11] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
XTransformer(ResNet-101) [10] 81.3 95.4 66.3 90.0 51.9 81.7 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4
XTransformer(SENet-154) [10] 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5
RSTNet(ResNext-101) [56] 81.7 96.2 66.5 90.0 51.8 82.7 39.7 72.5 29.3 38.7 59.2 74.2 130.1 132.4
RSTNet(ResNext-152) [56] 82.1 96.4 67.0 91.3 52.2 83.0 40.0 73.1 29.6 39.1 59.5 74.6 131.9 134.0
Ours(ResNeXt-101) 82.0 96.0 66.7 90.8 52.1 82.8 39.9 72.8 29.5 38.9 59.3 74.4 131.3 133.5
Ours(ResNeXt-152) 82.4 96.5 67.4 91.6 52.8 83.6 40.7 73.7 29.8 39.4 59.8 75.0 133.4 135.4

D. Performance Comparison

Offline Evaluation Tab. I and Tab. II provide performance
comparisons between the state-of-the-art models and our pro-
posed approach on the offline COCO Karpathy test split, for
both the single-model version and ensemble version, respec-
tively.
Single Model In Tab. I, we report the performance of our
method in comparison with the aforementioned state-of-the-
art models on grid-based features (ResNeXt-101 [39]), using
captions predicted from a single model and optimization of
the CIDEr score. To further validate the effectiveness of
our method, following previous work [8], we also conduct
experiments on region-based features (ResNet-101 [38]). Our
method achieves competitive results in both cases. On region-
based features, our method surpasses all other approaches
in terms of ROUGE-L and CIDEr, while being competitive
in BLEU-1, BLEU-4, METEOR and SPICE. On grid-based
features, our approach achieves the best performance in all
metrics. In particular, it advances the current state of the art
in CIDEr by 1.8%.
Ensemble Model Following the common practice [9], [32]

of building an ensemble of models, we also report the perfor-
mances of our approach when averaging the output probability
distributions of multiple independently trained versions of
our model. In Tab. II, we use ensembles of two and four
models, trained from different random seeds. Notably, for both
ensembles, our approach achieves the best performance in all
metrics, with increases of 3.7 and 3.3 CIDEr points over the
current state-of-the-art MMTransformer [11], respectively.
Online Evaluation Finally, we also report the performance
of our method on the online COCO test server. We use the
ensemble of four models previously described, trained on
the Karpathy training split. Results are reported in Tab. III,
in comparison with the top-performing approaches on the
leaderboard. For fair comparison, they also use an ensemble
configuration. As can be seen, our method (with ResNeXt-
152 [39]) surpasses the current state of the arts (e.g., RSTNet
with ResNeXt-152 [39]) in almost all metrics, achieving an
improvement of 1.4 CIDEr points over the previous best
performer.
Qualitative Analysis Fig. 2 shows several image captioning
results of the standard Transformer and the proposed MD-



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, XX XXXX 7

𝒘𝒘 = −𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏
𝒗𝒗 = 𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒

𝒘𝒘 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎
𝒗𝒗 = −𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐

𝒘𝒘 = −𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏
𝒗𝒗 = −𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎

𝒘𝒘 = −𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏
𝒗𝒗 = −𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒

𝒘𝒘 = 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐
𝒗𝒗 = 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐

𝒘𝒘 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎
𝒗𝒗 = 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔

𝒘𝒘 = −𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐
𝒗𝒗 = −𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔

𝒘𝒘 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎
𝒗𝒗 = 𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓

Fig. 3. The first, second and third rows represent the corresponding weight matrices of eight heads for absolute position embedding, relative position embedding
and our proposed DSA, respectively. We split the single-head input into 49 grid representations. The x-axis and y-axis both represent the grid index. The
colored box at position (i,j) presents the refined weight conditioned on the distance between the i-th and j-th grid. The brighter the color, the higher the value.

Fig. 4. Attention weights and captions generated by Transformer+DSA and the standard Transformer model. The highlighted parts of the 1st, 3rd, 4th and
7th heatmaps are distributed diagonally, corresponding to the heads of w < 0 in Fig. 3. This shows that the real distance information is indeed injected into
the attention weights of each head.

SAN. Generally, compared with the captions generated by the
standard Transformer, which are only somewhat relevant to the
image content though logically correct, our approach produces
more accurate sentences by exploiting the real distances and
the multi-branch technique. For example, MD-SAN generates
the accurate phrases of “towing a bus” and “on the steps”,
which cannot be obtained by the standard Transformer. Be-
sides, our approach generates more precise phrases with count-
ing, such as “a woman” and “a man”. This may be because
the introduction of real distances improves the capacity of
complex multi-modal reasoning, which is important for image
captioning with human language. However, the proposed MD-
SAN can only elaborate the content of the picture and still
lacks the ability of common sense reasoning. For example, our
model can only generate the description “two people standing
in a river with a yellow boat”. Even though this is more
accurate than the standard Transformer, it still cannot describe
“flooding waters”, which is easy for humans.

E. Experimental Analysis

Ablation Study To validate the effectiveness of our proposed
modules, we conduct ablation studies by comparing different

variants of the proposed MD-SAN.

Firstly, we investigate the impact of the number of the
encoding and decoding layers on captioning performance. As
shown in Tab. IV, changing the number of layers, we observe
a slight overall decrease in performance when the number of
layers is larger than 3. Following this finding, all experiments
use three layers.

Then, we investigate the impact of the number of the
branches M and the drop rate ρ in MSA. As shown in Tab.
V and Tab. VI, changing the number of branches, we observe
a significant increase on the CIDEr score when using three
branches and ρ = 0.4. Following this finding, all subsequent
experiments use M = 3 and ρ = 0.4.

Analysis of DSA First, we choose the standard Transformer
as our baseline, which is shown in the first row of Tab. VII.
We then extend the baseline model to include our DSA
module, which improves the performance. This verifies the
importance of our DSA. Then we compare it with the Trans-
former equipped with absolute position embedding (denoted
as AbsPE) [32], [59] and relative position embedding (RelPE)
[16], respectively. Our module again achieves significant per-
formance gains, proving the importance of capturing real
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Fig. 5. Examples of captions generated by our proposed DSA and
the standard Transformer model. Our method yields more accurate
descriptions.

Fig. 6. Examples of captions generated by our proposed MSA and
the standard Transformer model. Our method yields more accurate
descriptions.

Fig. 7. Examples of attention visualization and captions generated by our approach and the standard Transformer model. Some accurate words are marked
in green, and the wrong and inaccurate words are marked in red. Our method yields more accurate descriptions.

TABLE IV
ABLATION ON DIFFERENT NUMBERS OF LAYERS IN THE TRANSFORMER

MODEL. ALL VALUES ARE REPORTED AS PERCENTAGE (%).

Both the encoder and decoder have the same number of layers.
Layer BLEU-4 METEOR ROUGE-L CIDEr-D
l = 2 39.9 29.5 59.2 134.9
l = 3 39.8 29.6 59.1 135.1
l = 4 40.0 29.5 59.1 134.6
l = 5 39.6 29.6 59.3 134.6
l = 6 39.8 29.5 59.0 134.6

distances effectively. In addition, we explore the effects of
other different distances on our DSA, including Euclidean
distance and Chebyshev distance (denoted as EucliDSA and
ChebyDSA, respectively). We find that the adoption of these
distances barely affects the performance of the model, so
we choose the Manhattan distance for the least amount of
calculation. Also, we explored the effect of different scaling
functions in DSA for Eq. 7, including piecewise functions and

TABLE V
ABLATION ON DIFFERENT BRANCHES IN MSA WITH p = 0.4. ALL

VALUES ARE REPORTED AS PERCENTAGE (%).

MSA BLEU-4 METEOR ROUGE-L CIDEr-D Params
M = 1 38.9 29.0 58.5 131.2 33.6M
M = 2 39.3 29.3 58.9 133.3 36.7M
M = 3 39.5 29.4 58.9 134.0 39.9M
M = 4 39.5 29.4 59.1 133.6 43.0M

a naı̈ve scalar [60]: (1) Transformer+DSA-LPF adopts linear
piecewise functions as the scaling function, i.e.,

Ri =


0, wiR ≤ 0,

wiR, 0 < wiR ≤ 2,

2, wiR > 2,

(17)

where wi is a learnable parameter; (2) Transformer+DSA-QPF
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TABLE VI
ABLATION ON DIFFERENT DROP RATES IN MSA WITH M = 3. ALL

VALUES ARE REPORTED AS PERCENTAGE (%).

MSA BLEU-4 METEOR ROUGE-L CIDEr-D
ρ = 0.0 39.0 29.2 58.6 131.6
ρ = 0.1 39.4 29.4 59.0 132.9
ρ = 0.2 39.2 29.4 58.9 133.2
ρ = 0.3 39.4 29.3 58.9 133.6
ρ = 0.4 39.5 29.4 58.9 134.0
ρ = 0.5 39.4 29.4 59.0 132.8

adopts quadratic piecewise functions, i.e.,

Ri =


0, wiR

2 ≤ 0,

wiR
2, 0 < wiR

2 ≤ 2,

2, wiR
2 > 2;

(18)

(3) Transformer+DSA-NS adopts a naı̈ve scalar [60] as the s-
caling function. As shown in Tab. VIII, these scaling functions
also lead to good performance gains, which also demonstrates
the effectiveness of introducing distance information.

In order to further demonstrate the role of DSA, we first
provide several image captioning results of the standard Trans-
former and the proposed DSA. As shown in Fig. 5, compared
with the captions generated by the standard Transformer, our
proposed DSA can describe more accurate spatial location
or spatial-related relationship information. For example, our
proposed DSA accurately identified the passenger seat of the
car, which was identified as the back seat by the baseline
method.

To further explore the ability of absolute position embed-
ding, relative position embedding and our proposed DSA to
model the real distance, we propose a new matrix Zi, which
is given by:

Zi = softmax(
Ei
E0
i

), (19)

where Ei denotes the similarity matrix of various Transformer
variants before softmax function, which can be referred to
Eq. 8, and E0

i represents the counterpart after removing the
positional embedding. We then show the matrices of Zi of
eight heads for absolute position embedding, relative position
embedding and our proposed DSA in Fig. 3. We can see
that the matrices of absolute position embedding and relative
position embedding are haphazard and almost unregulated. In
terms of DSA, different heads respond differently to distance
information. When w>0, they tend to capture the long-
distance relationships; when w<0, they tend to capture the
short-distance relationships. |w| reflects the sensitivity to the
distance. Fig. 4 shows that real distance information is indeed
injected into the attention weights of each head, helping to
yield more accurate captions.

Like the locality principle of CNN, our DSA imposes the
strong assumption that either the closer the grid is the more
important it is, or the more distant it is the more important it
is. This assumption significantly narrows the search space, and
allows our DSA to introduce far fewer parameters than existing
positional embedding methods. From another perspective, we
know that self-attention is good at capturing global dependen-
cies but local relationships can easily be ignored. While our

TABLE VII
ABLATION STUDY ON DIFFERENT POSITION EMBEDDING VARIANTS OF

THE STANDARD TRANSFORMER. ALL VALUES ARE REPORTED AS
PERCENTAGES (%).

B-1 B-4 M R C S
Transformer 80.9 38.9 29.0 58.5 131.2 22.7
Transformer+AbsPE 81.0 39.2 29.2 58.7 132.5 22.8
Transformer+RelPE 81.1 39.2 29.3 58.8 132.9 23.1
Transformer+ChebyDSA 81.0 39.2 29.3 58.9 133.1 23.0
Transformer+EucliDSA 81.1 39.2 29.3 59.0 133.2 23.0
Transformer+DSA 81.1 39.3 29.4 58.9 133.3 23.0

TABLE VIII
ABLATION STUDY OF DIFFERENT SCALING FUNCTIONS.

B-1 B-4 M R C S
Transformer 80.9 38.9 29.0 58.5 131.2 22.7
Transformer+DSA-LPF 81.1 39.1 29.3 58.7 133.0 22.9
Transformer+DSA-QPF 81.3 39.3 29.3 58.9 133.2 22.8
Transformer+DSA-NS 81.1 39.1 29.2 58.6 132.8 22.9
Transformer+DSA 81.1 39.3 29.4 58.9 133.3 23.0

DSA just focuses on the modeling of local relations, which
greatly makes up for the deficiency of transformer and makes
the model more powerful. Then we also add the local-window
designs for comparison, including [61] and [62], denoted as
Transformer+Swin and Transformer+Halo, respectively. As
shown in Tab. IX, we can find that our DSA achieves the
best performance, which is due to the fact that our DSA can
adaptively introduce local information without the limitation
of a fixed window size.
Analysis of MSA As can be seen from Tab. X, the
Transformer with our MSA module outperforms the standard
Transformer in all metrics, in particular with an increase of
2.8 CIDEr points. This validates the effectiveness of MSA in
breaking the low-rank bottleneck. Next, we further introduce
four strong baselines: Transformer+Talking [19], which in-
cludes linear projections across the attention-heads dimension
before and after the softmax operation, Transformer+Mh-
Heads, which is also the standard transformer where the
number of attention heads and the dimensionality of each
head is the same as MSA (with 3*8 attention heads), Trans-
former+ExtendQK [18], which sets the head size of an at-

TABLE IX
COMPARISONS WITH THE LOCAL-WINDOW DESIGNS.

B-1 B-4 M R C S
Transformer 80.9 38.9 29.0 58.5 131.2 22.7
Transformer+Swin 81.0 39.2 29.3 58.7 132.5 22.8
Transformer+Halo 80.9 39.4 29.3 58.8 132.8 22.9
Transformer+DSA 81.1 39.3 29.4 58.9 133.3 23.0

TABLE X
ABLATION STUDY ON DIFFERENT VARIANTS OF THE PLAIN

TRANSFORMER. ALL VALUES ARE REPORTED AS PERCENTAGES (%).

B-1 B-4 M R C S Params
Transformer 80.9 38.9 29.0 58.5 131.2 22.7 33.6M
Transformer+Talking 81.1 39.3 29.2 58.9 132.4 22.7 33.6M
Transformer+Mh-Heads 81.0 39.2 29.3 58.8 132.2 22.9 39.9M
Transformer+ExtendQK 81.1 39.3 29.4 58.9 133.1 22.9 44.6M
Transformer-Large 81.0 39.1 29.2 58.8 132.0 22.8 39.9M
Transformer+MSA 81.1 39.5 29.4 58.9 134.0 23.1 39.9M
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TABLE XI
ABLATION STUDY OF DIFFERENT DROP BRANCH RATE FOR

TRANSFORMER+MH-HEADS AND TRANSFORMER+EXTENDQK.

ρ B-1 B-4 M R C S
0.0 81.0 39.2 29.3 58.8 132.2 22.9

Transformer+Mh-Heads 0.2 81.0 39.4 29.3 58.8 132.9 22.8
0.3 81.2 39.3 29.3 58.8 133.1 22.9
0.4 81.1 39.4 29.4 58.9 133.3 23.0
0.0 81.1 39.3 29.4 58.9 133.1 22.9
0.2 81.0 39.4 29.2 58.7 133.4 22.8

Transformer+ExtendQK 0.3 81.0 39.4 29.3 58.8 133.3 22.9
0.4 81.1 39.2 29.2 58.8 133.0 22.8

Transformer+MSA 0.4 81.1 39.5 29.4 58.9 134.0 23.1

tention unit to the input sequence length (i.e., 512), and
Transformer-Large, which is the standard Transformer with
8 heads, and has as many parameters as the proposed MSA-
based Transformer (8 heads and the dimensionality of each
head is 192). Our MSA-based Transformer is significantly bet-
ter than these four strong baselines in almost all metrics. Then,
we apply the drop branch technique to Transformer+Mh-
Heads and Transformer+ExtendQK, respectively. As shown
in Tab. XI, we can see that the performance does increase
a bit, which shows that the adoption of drop branch technique
can improve the performance of the model after increasing
the discriminability of each subspace feature. However, the
above improvements are still much less than that made by the
proposed MSA. First, this multi-branch structure can greatly
enhance the capacity of the model [37], trading structural
complexity for expressive power. Secondly, our MSA inherits
the property of global dependency in multi-head self-attention.
The effectiveness of self-attention mainly lies in its multi-
head attention (MHA), which captures feature dependencies
in different truncated feature spaces. Our MSA design can be
regarded as step forward than MHA to generate more diversity
subspaces with greater granularity on branches, encouraging
each branch to learn discriminative representation.

Meanwhile, we further explored the role of MSA in differ-
ent layers, as shown in Tab. XII. We can see that adding MSA
to almost all layers results in some performance improvement,
especially in the third layer. One speculation is that the
third layer is responsible for the extraction of higher-level
semantics, and enhancing the expressiveness of this layer can
improve the performance of the model in a very direct way.

In order to further demonstrate the role of MSA, we provide
several image captioning results of the standard Transformer
and the proposed MSA, as shown in Fig. 6. Generally, com-
pared with the captions generated by the standard Transformer,
the latter produces more accurate sentences by exploiting the
multi-branch technique.
Combination of DSA and MSA From Tab. XIII, we can see
that both DSA and MSA outperform the standard Transformer
across all metrics. Moreover, MD-SAN further outperforms
DSA and MSA, which demonstrates that they are compatible
with each other. Specifically, our MSA further enhances the
global dependency modeling capability of MHA; while DSA
introduces the modeling capability of local dependencies a-
long with positional information. Both automatically find a
reasonable balance through the learning of parameters w and

TABLE XII
ABLATION STUDY ON DIFFERENT VARIANTS OF THE MD-SAN TO

FURTHER EXPLORE THE THE ROLE OF MSA. WE TAKE
TRANSFORMER+DSA AS THE BASELINE, AND TRY TO ADD MSA IN
DIFFERENT LAYERS SEPARATELY. THE NUMBER AFTER THE SYMBOL
”MSA-” INDICATES THE LAYER TO WHICH THE MSA IS ADDED. ALL

VALUES ARE REPORTED AS PERCENTAGES (%).

B-1 B-4 M R C S Params
Transformer+DSA 81.1 39.3 29.4 58.9 133.3 23.0 33.6M
+MSA-1 81.2 39.5 29.3 58.9 133.4 23.0 35.7M
+MSA-2 81.0 39.3 29.4 59.0 133.7 23.1 35.7M
+MSA-3 81.4 39.6 29.3 58.9 133.5 22.9 35.7M
+MSA-1,2 80.8 39.1 29.5 58.9 133.4 23.0 37.8M
+MSA-1,3 81.5 39.7 29.5 59.0 134.8 23.0 37.8M
+MSA-2,3 81.4 39.6 29.4 59.0 134.2 23.0 37.8M
+MSA 81.5 39.8 29.6 59.1 135.1 23.2 39.9M

TABLE XIII
ABLATION STUDY ON DIFFERENT VARIANTS OF THE PLAIN

TRANSFORMER. ALL VALUES ARE REPORTED AS PERCENTAGES (%).

B-1 B-4 M R C S
Transformer 80.9 38.9 29.0 58.5 131.2 22.7
Transformer+DSA 81.1 39.3 29.4 58.9 133.3 23.0
Transformer+MSA 81.1 39.5 29.4 58.9 134.0 23.1
Transformer+DSA+MSA 81.5 39.8 29.6 59.1 135.1 23.2

v.
Attention Visualization In order to better qualitatively eval-
uate the generated results, in Fig. 7 we visualize the attention
heatmap of each word of a caption generated by the standard
Transformer and the proposed MD-SAN. The contribution of
one grid with respect to the output is given by averaging the
attention weights of the eight heads in the last layer of the
decoder. Our MD-SAN can accurately identify the animals
close to the water rather than in the water. Results presented
in Fig. 7 show that our approach can help ground correct image
grids to words and generate more accurate captions.

VI. EXTENSION TO OTHER TASKS

We further investigate the effectiveness and generality of
our method on the VQA and VG tasks. Since VQA and VG
are both multi-modal classification problems, we use MCAN
[44] as the baseline model, which uses an SA-based network
to simultaneously encode image and sentence information. To
apply our method to VQA and VG, we replace all the SA
modules in MCAN with our DSA and MSA modules.

TABLE XIV
COMPARISON OF VQA ACCURACIES ON THE VQA-V2 DATASET WITH

STATE-OF-THE-ART SINGLE-MODEL METHODS.

Method Overall (%) Yes/No (%) Number (%) Other (%) Params
ResNet-101

BUTD [63] 63.84 81.40 43.81 55.78 -
MFH [64] 66.18 84.07 46.55 57.78 -
BAN-4 [65] 65.86 83.53 46.36 57.56 -
BAN-8 [65] 66.00 83.61 47.04 57.62 -
MCAN [20] 67.14 84.86 49.30 58.39 57.81M
Ours 67.43 85.00 49.81 58.73 70.42M

ResNext-101
MCAN [20] 67.44 85.15 49.83 58.63 57.81M
Ours 67.72 85.08 51.03 58.93 70.42M
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TABLE XV
COMPARISON OF ACCURACIES (WITH IOU>0.5) ON REFCOCO,

REFCOCO+ AND REFCOCOG WITH STATE-OF-THE-ART METHODS. ALL
METHODS USE DETECTED OBJECTS TO EXTRACT VISUAL FEATURES.

RefCOCO RefCOCO+ RefCOCOg
Method TestA TestB Val TestA TestB Val Test Val
CMN [66] 71.0 65.8 - 54.3 47.8 - - -
VC [21] 73.3 67.4 - 58.4 53.2 - - -
Spe.+Lis.+Rein.+MMI [67] 73.7 65.0 69.5 60.7 48.8 55.7 59.6 60.0
Spe.+Lis.+Rein.+MMI [67] 73.1 64.9 69.0 60.0 49.6 54.9 59.2 59.3
MAttNet [23] 81.1 70.0 76.7 71.6 56.0 65.3 67.3 66.6
MCAN [20] 83.7 73.2 79.6 77.3 60.4 70.5 73.2 72.8
Ours 84.6 74.7 80.6 77.4 61.7 70.7 73.7 73.0

A. Visual Question Answering

We conduct experiments on the most commonly used
dataset for the VQA task [22]. It contains human annotated
question-answer pairs for COCO images, with three questions
per image (Yes/No, Number, and Other) and ten answers
per question. We first strictly follow MCAN [20] when im-
plementing our models. Specifically, images are represented
with region features extracted from the Faster R-CNN object
detector and the input questions are transformed with the
GloVe word embeddings and an LSTM network. To further
validate the effectiveness, we also conduct experiments on grid
features.

Tab. XIV shows the overall accuracies of our method and
the current state-of-the-art models on the offline test splits.
The proposed MD-SAN boosts the accuracy of MCAN from
67.44% to 67.72%.

B. Visual Grounding

We use the same settings for the three visual grounding
datasets [68]. For the textual queries, the maximum length
is set to 14. For the images, we adopt a pre-trained object
detector to extract the visual features, e.g., a Faster R-CNN
model trained on Visual Genome. During the training data
preparation for the detector, we exclude all the common
images that exist in the training, validation and test sets
of RefCOCO, RefCOCO+, and RefCOCOg to avoid data
leakage. We detect 100 objects for each image.

In Tab. XV, we report the comparative results on RefCOCO,
RefCOCO+, and RefCOCOg. We employ the commonly used
accuracy metric [69], where a prediction is considered correct
if the predicted bounding box overlap with the groundtruth
IoU is larger than 0.5. Equipped with the visual features (i.e.,
the Faster-RCNN model pre-trained on Visual Genome), our
proposed MD-SAN obtains further improvement in overall
accuracies across all datasets.

VII. CONCLUSION

In this paper, we present the Multi-branch Distance-sensitive
Self-Attention Network (MD-SAN) for image captioning,
which addresses the distance insensitivity problem and low-
rank bottleneck of the standard self-attention. We propose
two improvements to the self-attention mechanism, these in-
clude the Distance-sensitive Self-Attention (DSA) to explicitly
consider the real distances between objects in 2D images
and improve image understanding, and the Multi-branch Self-
Attention (MSA) to improve the capacity of the model and

increase the expressive power at negligible extra computational
cost. Extensive experiments on the MS-COCO image caption-
ing dataset validate the effectiveness of DSA, MSA, and their
combination. Our method is also extendable to the VQA and
VG tasks, improving state-of-the-art models.
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