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Abstract

Existing studies in few-shot semantic segmentation only
focus on mining the target object information, however, of-
ten are hard to tell ambiguous regions, especially in non-
target regions, which include background (BG) and Dis-
tracting Objects (DOs). To alleviate this problem, we pro-
pose a novel framework, namely Non-Target Region Elim-
inating (NTRE) network, to explicitly mine and eliminate
BG and DO regions in the query. First, a BG Mining
Module (BGMM) is proposed to extract the BG region via
learning a general BG prototype. To this end, we design
a BG loss to supervise the learning of BGMM only using
the known target object segmentation ground truth. Then,
a BG Eliminating Module and a DO Eliminating Module
are proposed to successively filter out the BG and DO in-
formation from the query feature, based on which we can
obtain a BG and DO-free target object segmentation result.
Furthermore, we propose a prototypical contrastive learn-
ing algorithm to improve the model ability of distinguish-
ing the target object from DOs. Extensive experiments on
both PASCAL-5i and COCO-20i datasets show that our ap-
proach is effective despite its simplicity. Code is available
at https://github.com/LIUYUANWEI98/NERTNet

1. Introduction
Due to the rapid development of fully convolutional net-

work (FCN) [21] architectures, deep learning has made
milestone progress in semantic segmentation. Most meth-
ods adopt the fully-supervised learning scheme and require
a mass of annotated data for training. Although they can
achieve good performance, their data-hungry nature de-
mands time and labor-consuming image annotations. To
alleviate this problem, few-shot semantic segmentation was
proposed to segment unseen object classes in query images
with only a few annotated samples, namely supports.

Currently, there are many existing researches exploring
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Figure 1. Previous methods often show false positive predictions
in non-target regions. Pixels in red indicate the target objects,
while pixels in green mean false positive predictions.

Figure 2. Comparison between existing framework and ours for
few-shot segmentation. The main difference is that the former only
mines target category information, while we propose to eliminate
co-existing pixels belonging to non-target regions, including the
background (BG) and distracting objects (DO).

various deep learning methods for few-shot semantic seg-
mentation [14, 20, 29, 31, 33, 42]. They usually extract fea-
tures from both query and support images first, and then
extract the class-specific representation using the support
masks. Finally, a matching network is leveraged to segment
the target object in the query image using the class repre-
sentation.

Most typically, prototypical learning methods [6, 31, 33,
42,44] use masked average pooling (MAP) on the target ob-
ject regions of the support images to form a single or a few
prototypes. Then, prototypes are used to segment the tar-
get object in the query image via conducting dense feature



matching.
Although some achievements have been made, these

methods all focus on digging out more effective target infor-
mation from supports as much as possible, and then trans-
ferring them to the query image to achieve segmentation
(see Figure 2 (a)). However, as illustrated in Figure 1,
they often suffer from the false positive prediction in back-
grounds (BG) and co-existing objects belonging to other
classes, namely, distracting objects (DOs). The main rea-
son is that solely focusing on target objects in the few-shot
setting makes their models hard on learning discriminative
features and differentiating ambiguous regions.

To alleviate this problem, we rethink the few shot seman-
tic segmentation task from a new perspective, that is, mining
and excluding non-target regions, i.e., BG and DO regions,
rather than directly segmenting the target object. From this
point, in this paper, we propose a novel framework, namely
non-target region eliminating (NTRE) network for few-shot
semantic segmentation. As shown in Figure 2 (b), we first
develop a BG mining module (BGMM) to obtain a BG pro-
totype and segment the BG region. Then, a BG eliminating
module (BGEM) is proposed to filter out the BG informa-
tion from the query feature. Next, the target prototype from
the support is utilized in a matching network to activate the
target object in the query feature. Subsequently, we adopt
a DO eliminating module (DOEM) to mine the DO region
first and then filter out the DO information from the query
feature. As such, finally, we can obtain an accurate target
segmentation result without the distraction from the BG and
DO regions.

In the BGMM, obtaining the BG prototype is not
straightforward as we obtain the support prototype. Con-
sidering that BG regions universally exist in almost every
image, such as sky, grass, walls, and etc, we propose to
learn a general BG prototype from both query and support
images in the training set. Based on this prototype, we can
segment the BG regions for all images easily. Since having
no ground truth BG segmentation masks to supervise the
model learning, we specifically design a BG mining loss
based on the known target segmentation masks.

Furthermore, considering that it’s hard to learn a good
prototype feature embedding space to differentiate DOs
from the target object under the few-shot setting, we pro-
pose the prototypical contrastive learning (PCL) method to
improve the object-discrimination ability of the network by
refining the prototype feature embeddings. Specifically, for
a query target prototype, we treat the corresponding support
target prototype as the positive sample, while the DO proto-
types both in query and support are considered as negative
samples. We then propose a PCL loss to enforce the proto-
type embeddings to be similar within the target prototypes
and dissimilar between target and DO prototypes. As such,
the PCL could effectively help the network distinguish tar-

get objects from DOs.
In summary, our contributions are as follows:
• To the best of our knowledge, this is the first time to

mine and eliminate non-target regions, including BG
and DOs, for few-shot semantic segmentation, which
can effectively decrease false positive predictions.

• We propose the BGMM, BGEM, and DOEM for ef-
fectively implementing the mining and eliminating of
the BG and DO regions. A novel BG mining loss is
also proposed for training the BGMM without using
BG ground truth.

• We propose a PCL method to improve the model abil-
ity for better distinguishing target objects from DOs.

• Extensive experiments on PASCAL-5i and COCO-20i

show that our proposed framework yields a new state-
of-the-art performance, especially on the 1-shot set-
ting.

2. Related Works
Semantic Segmentation. Compared with convolutional
neural networks (CNNs) [13], the emergence of the FCN
[21] has brought great progress to the semantic segmen-
tation task. Specifically, the fully connected layers in
CNNs are replaced by fully convolutional layers to en-
able pixel-level prediction. Based on the FCN, various
network architectures are proposed to tackle the seman-
tic segmentation problem in recent works. For example,
[5,8,15,30,40,43,46] propose various attention mechanisms
embedded in the FCN architecture. Some other works uti-
lize different feature fusion methods, such as the pyramid
pooling module [45], dilated convolution kernels [2], multi-
scale feature aggregation [10], dense atrous spatial pyramid
pooling (ASPP) [39]. However, these traditional seman-
tic segmentation networks are powerless when dealing with
unseen categories. Meanwhile, training such networks are
computationally costly and also requires labor-consuming
pixel-level annotations on large-scale data.

Few-shot Semantic Segmentation. Few-shot semantic
segmentation aims to segment unseen object classes in
query images with only a few annotated samples. There are
two mainstream frameworks to segment the target objects
in query images. One is the pixel-level matching frame-
work, which is firstly proposed by [26]. This framework
usually generates the target object prototype from the sup-
port features first, and then segments the query using dense
feature matching. Another is the pixel-level measurement
framework, proposed by [44], which measured the embed-
ding similarity between the query and the supports. Fol-
lowing the first framework, CANet [42] utilized an Iterative
Optimization Module (IOM) to refine the prediction pro-
gressively after concatenating the support prototype and the
query features. PFENet [31] proposed a prior mask by cal-
culating the cosine similarity between the support and query



images on high-level features without learnable parame-
ters. ASGNet [14] proposed a superpixel-guided clustering
method to obtain multi-part prototypes from the support and
used an allocation strategy to reconstruct the support feature
map instead of using prototype expanding. Following the
second framework, PANet [33] embedded different object
classes into different prototypes with a pre-trained encoder.
Then, the query image was labeled based on the distance
between the representations of the query image and the pro-
totypes. Yang et al. [38] proposed a novel joint-training
framework via introducing additional base category proto-
types to mine latent novel classes during training. Most of
these previous methods focus on directly segmenting the
target object. Differently, in this paper, we are the first to
propose leveraging complementary non-target knowledge
and eliminating distracting regions for few-shot segmenta-
tion.

Contrastive Learning Most previous computer vision
researches focus on designing artificially preferred net-
work architectures to tackle various computer vision tasks.
The emergence of contrastive learning [11] brings our fo-
cus back to mining better deep feature representations
via contrasting positive and negative samples. SimCLR
[3] proposed a simple self-supervised contrastive learning
paradigm by using different data augmentation methods to
form positive and negative samples for each image instance.
MoCo [4, 11] proposed to store negative samples using a
dynamically updated queue, in which only the stored fea-
ture vectors from recent batches are used for training. As
such, MoCo solved the inconsistency problem of the sam-
pled features due to the optimization to the encoder. Very
recently, Wang et al. [34] introduced contrastive learning
in supervised semantic segmentation and proposed a pixel-
wise contrastive algorithm. They treated the pixel embed-
dings of the same class and different classes as positive
and negative samples, respectively. Different from them,
in our work, we propose the PCL scheme to improve the
objects-discrimination ability of the extracted prototypes,
which could effectively help the network distinguish target
objects from DOs.

3. Proposed Method
3.1. Problem Definition

Few-shot semantic segmentation aims to train a model
on base classes, and segment unseen objects in query im-
ages with a few annotated support samples without re-
training. Typically, all the datasets are divided into two
subsets. One is the training set Dbase with the base classes
Cbase. The other is the testing set Dnovel with the novel
classes Cnovel. These two sets of classes are disjoint, i.e.,
Cbase ∩ Cnovel = ∅. Specifically, the training set Dbase

is partitioned into several episodes after randomly sampling

K + 1 image-mask pairs that contain objects from a spe-
cific class in Cbase. The testing set is composed of sim-
ilar episodes, except that the data are sampled from the
Cnovel. For one episode, K image-mask pairs are treated as
the support set S= {(Is

i ,M
s
i )}Ki=1 to segment the objects

of the target class in the remaining one sample, which is
termed the query set Q. Here, I ∈ RH×W×3 indicates the
RGB image and M ∈ RH×W indicates the corresponding
mask. Q= {(Iq,M q)} is provided with the ground truth
only during training. Following this episode, the network is
trained on Dbase and evaluated on Dnovel .

3.2. Overview

As aforementioned, few-shot semantic segmentation
models usually fail in ambiguous non-target regions. Moti-
vated by this observation, we propose to mine and eliminate
non-target regions, which include the background (BG) re-
gions and the distracting object (DO) regions.

We first follow previous methods and use a pre-trained
backbone to extract the query feature map Xs ∈ RH×W×C

and the support feature map Xq ∈ RH×W×C from corre-
sponding images, respectively. Then, the BG mining mod-
ule (BGMM) is proposed to mine the BG region via learn-
ing a general BG prototype, which is randomly initialized
and subsequently learned on the training set. We also pro-
pose a novel BG loss without using accurate BG segmenta-
tion ground truth. Next, a BG eliminating module (BGEM)
is utilized to filter out the BG information from the query
feature. Subsequently, we follow prototypical learning to
activate the target region in the query feature using the sup-
port target prototype and feature matching (FM). An initial
target object segmentation mask can be further obtained.

After that, a DO eliminating module (DOEM) is pro-
posed to filter out DO information from the query feature.
The DO region can be first mined by combining the BG
segmentation map and the initial target prediction. Then,
the DO prototype can be obtained from the query feature
and used for DO elimination. The prototypical contrastive
learning (PCL) is also adopted for better discriminating the
target object from DOs. Finally, a segmentation network is
used to achieve the BG and DO-free prediction.

3.3. Background Mining and Eliminating

3.3.1 Background Mining Module

Background regions, in which no obvious objects appear,
commonly exist in most images. Based on this common-
ality, we propose to use a BG prototype to encode general
BG knowledge. It can be represented as PBG ∈ R1×1×D,
where D is the channel dimension. Inspired by some
saliency detection methods [17, 18], it is feasible to learn
PBG on a large number of images and then use it to detect
BG regions on any natural image.

Hence, in this paper, we first randomly initialize PBG



Figure 3. Overall architecture of the proposed method for few-shot semantic segmentation. Our network is composed of four parts.
After extracting features from both the support and query images via a pre-trained backbone, our Background Mining Modul (BGMM) is
performed to obtain a BG prototype and segment the BG regions. Meanwhile, Background Eliminating Module (BGEM) is performed to
eliminate the BG regions. The third part is to obtain the activated query feature and further an initial target prediction via Feature Matching
(FM). The last part is to eliminate the distracting objects by our proposed Distracting Objects Eliminating Module (DOEM).

and then learn it from both support and query images in the
base classes during training. Specifically, given the query
feature map XQ and the support feature map XS extracted
from the backbone, we expand PBG to the same size as
them, obtaining P̂BG ∈ RH×W×C . Then, we concate-
nate it with Xq and Xs, respectively, and use a simple seg-
mentation network F3×3(·) to get the BG prediction for the
query and the support:

yq
BG = F3×3(X

q ⊕ P̂BG), (1)

ys
BG = F3×3(X

s ⊕ P̂BG), (2)

where ⊕ denotes the concatenation operation along the
channel dimension and F3×3 is composed of two 3×3 con-
volutional layers and shares the same weights in both (1)
and (2). y

q/s
BG ∈ RH×W×1 is the BG segmentation proba-

bility map of the query or the support.

Background Mining Loss. In the few-shot semantic seg-
mentation task, we only have the ground truth of target
object masks, i.e., M q and M s, and have no BG region
ground truth. In order to force PBG effectively predict the
BG region as we expected, we design a BG mining loss to
optimize this learning process as below:

LBG =− 1

N

∑
i

log(1− y
q/s
BG(i))M

q/s(i)

− α
1

Z

∑
j

log(y
q/s
BG(j)),

(3)

where i and j are the indexes of the spatial locations. M q/s

is the ground truth of target objects belonging to query or

support. N denotes the total number of the target object
pixels and Z is equal to H ×W . α is a hyperparameter to
weight the second term.

The core idea of this loss is that the BG prediction should
belong to the reverse region of the target object, i.e., pre-
dicting zero in y

q/s
BG for the pixels that belong to the target

object. However, solely using this constraint may lead to a
trivial solution that predicts all zeros for yq/s

BG. To alleviate
this problem, we add the second term as a regularization to
force the module must predict valid BG regions for every
image.

3.3.2 Background Eliminating Module

We further use the expanded BG prototype P̂BG to filter
out the BG information from the query feature map via pro-
totypical learning. Specifically, we first concatenate P̂BG

with Xq and then use a convolutional layer F1×1(·) to ex-
clude the BG information in the query. The whole process
can be denoted as:

Xq
BG = F1×1(X

q ⊕ P̂BG), (4)
where Xq

BG ∈ RH×W×C denotes the BG-filtered query
feature and F1×1(·) denotes a 1×1 convolutional layer.

3.4. Support Feature Matching

Following previous methods, we further use dense fea-
ture matching to activate the target object region on the
Xq

BG. Concretely, masked average pooling (MAP) is first
used on the support feature map Xs to get the support pro-
totype P s ∈ R1×1×C . Then, it is expanded to P̂ s ∈
RH×W×C and concatenated with the BG-filtered query fea-



ture Xq
BG. We also follow [31] and introduce a prior con-

fidence map Cp ∈ R H×W×1 via computing the maximum
similarity score at pixel-level. After that, we obtain the acti-
vated query feature Xq

act ∈ RH×W×C and further achieve
the initial target object prediction yq

ini ∈ RH×W×1:

Xq
act = F1×1(X

q
BG ⊕ P̂ s ⊕Cp), (5)

yq
ini = F3×3(X

q
act), (6)

where F1×1(·) is the same as in (4) and F3×3(·) is the same
as in (1).

3.5. Distracting Objects Eliminating

3.5.1 Distracting Object Eliminating Module

Although we have eliminated BG information in Xq
act, it

may still suffer from the distraction of DOs. To this end,
we design the DOEM to further filter out DO information
from Xq

act for more accurate target object prediction. To
be specific, we mine the potential DO region in the query
based on the known BG region in yq

BG and the target object
region in yq

ini. Intuitively, the DO region is complementary
to the union of the BG region and target region. Hence, we
have:

Y q
DO = 1− (Y q

BG ∪ Y q
ini), (7)

where YDO ∈ RH×W×1 denotes the DO mask. Y q
BG and

Y q
ini are the binary maps corresponding to yq

BG and yq
ini,

respectively.
Next, we utilize Y q

DO to obtain the DO prototype P q
DO ∈

R1×1×C via performing MAP on the query feature map:

P q
DO =

∑
Xq ⊗ Y q

DO∑
Y q
DO

, (8)

where ⊗ denotes the element-wise multiplication and the
summation sums over all spatial locations.

After that, we expand the P q
DO into P̂ q

DO ∈ RH×W×C

and combine it with the activated query feature map Xq
ini

to eliminate the DO information. Finally, the combined fea-
ture is passed into a segmentation network, for which we
use the Feature Enrichment Module (FEM) in [31], to ob-
tain the BG and DO-free prediction:

yq = Seg(Xq
ini ⊕ P̂ q

DO), (9)
where yq ∈ RH×W×1 is the final target object segmenta-
tion result of our whole model.

3.5.2 Prototypical Contrastive Learning

The DOEM only cares about the DO mask Y q
DO in the

DO eliminating process. However, a good DO eliminating
model requires not only accurate DO masks, but also good
prototype feature embeddings that can differentiate the tar-
get objects from DOs easily. Inspired by recent research
on contrastive learning, we propose the prototypical con-
trastive learning (PCL) method to refine the feature embed-
dings of different prototypes. With the help of PCL, we

want to make the prototype features between the target ob-
jects and the DOs more discriminative, and the prototypes
between the target objects of the query and the support more
similar.

To this end, we need to obtain the target prototypes and
DO prototypes for both the query and the support first. For
the target prototypes, we have obtained it for the support,
i.e., P s, from Section 3.4. For the query image, we first
binarize the final target prediction yq as the target mask and
then adopt MAP on the query feature to generate the target
prototype of the query P q ∈ R1×1×C . As for the DO pro-
totypes, we have computed it for the query, i.e., P q

DO, in
(8). For the support image, we adopt the same workflow to
compute the DO prototype of the support P s

DO, i.e., using
the target mask M s and the BG mask Y s

BG to generate the
DO mask, and then conducting MAP on the support feature.

Prototypical Contrastive Learning Loss. According to
the paradigm of contrastive learning, we propose a PCL loss
to optimize the above prototype feature embeddings. For
the query prototype P q , we treat the corresponding support
prototype P s as the positive sample, while the DO proto-
types in both query and support as negative samples. Con-
sidering that a large number of negative samples is indis-
pensable for contrastive learning, we build a DO prototype
bank B to store the embeddings of 2000 DO prototypes in
the latest batches during training. Note that they can be
sampled across different episodes of the same class. At last,
inspired by InfoNCE [23], we propose our PCL loss:

LPCL=−log
ecos(P

q,P s)∑
B{ecos(P

q,P q
DO) + ecos(P

q,P s
DO)}

, (10)

where cos(, ) denotes the cosine similarity.

3.6. Total Training Loss

We use two binary cross-entropy losses to supervise the
training of the initial target prediction yq

ini and the final pre-
diction yq , composing the target segmentation loss LT . Fi-
nally, our total training loss includes LT , the BG loss LBG

in (3), and the PCL loss LPCL in (10):
L = βLT + λLBG + γLPCL, (11)

LT = BCE(yq
ini,M

q) + BCE(yq,M q), (12)

where BCE denotes the binary cross-entropy loss and
β, λ, γ are adjustable loss weights.

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our model on two benchmark
datasets, i.e., the PASCAL-5i dataset [26] and the COCO-
20i dataset [22]. PASCAL-5i is constructed based on the
PASCAL VOC 2012 dataset [7] and external annotations



Figure 4. Qualitative results of our proposed NTRENet and
PFENet. From left to right: support images, query images, pre-
diction of PFENet, prediction of NTRENet.

from SDS [9]. The total 20 categories are partitioned into 4
folds as in [33] for cross validation and each fold contains
5 categories. COCO-20i is a larger datasets based on the
MSCOCO [16] dataset. Similar to PASCAL-5i, the total
80 categories are also partitioned into 4 folds for cross val-
idation, where each fold includes 20 categories. For both
the datasets, we test on 1 fold and train on the remaining 3
folds.
Evaluation Metrics. Following previous methods [19,20,
26, 27], we adopt the class mean intersection over union
(mIoU) as a primary evaluation metric for ablation stud-
ies and comparisons. In addition, we report the results
of foreground-background IoU (FB-IoU), which only cares
about the performance on target and non-target regions in-
stead of differentiating categories, for a more comprehen-
sive comparison. , the precision, whose formulation follows

TP
TP+FP , also be leveraged to report our modules perfor-
mance on decreasing false positives.

4.2. Implementation Details

Following previous works, we respectively use ResNet-
50, ResNet-101 [12], and VGG-16 [28] as the backbones
to construct our network for fair comparisons. These back-
bones are all pre-trained on the ImageNet classification task
and their weights are fixed during training.

Our network is implemented using PyTorch [24] and all
the experiments are conducted on one NVIDIA RTX 3090
GPU. We use random scaling, horizontal flipping, and ran-
dom rotation within [-10,10] degrees as data augmentation
to increase the training data. Finally, we randomly crop
images and masks with the size of 473 × 473 to train our
model. During training, we use SGD as our optimizer,
where the initial learning rate, batch size, weight decay,

and momentum are set as 0.03, 32, 0.0001, and 0.9, respec-
tively. We train our model for 200 epochs on PASCAL-5i

and 50 epochs on COCO-20i, respectively. The learning
rate is decayed using the polynomial annealing policy with
the power set to 0.9. During the evaluation, we follow [38]
to randomly sample 1000 support-query pairs on PASCAL-
5i and 4000 pairs on COCO-20i, respectively.

4.3. Comparison with State-of-the-art Methods

PASCAL-5i. Table 1 shows the performance comparison
on PASCAL-5i between our method and several representa-
tive models. We can see that, on all the three backbones(i.e.,
VGG-16, Resnet-50, and Resnet-101), our method outper-
forms all previous models by a large margin in terms of both
mIoU and FB-IoU. Specifically, under the 1-shot setting,
the averaged mIoU scores of our method are 59.0, 64.2,
and 63.7 on the VGG-16, Resnet-50, and Resnet-101 back-
bones, respectively, surpassing state-of-the-art results by
1.2%, 3.4%, and 1.8%, respectively. Meanwhile, in terms of
FB-IoU, our method outperforms the previous best results
by 1.1%, 5.0%, and 3.3% on the three backbones, respec-
tively. Under the 5-shot setting, our method only obtains
the best results on the VGG-16 backbone in terms of mIoU,
but outperforms previous state-of-the-art FB-IoU results by
2.6%, 5.7%, and 1% on all three backbones, respectively.

COCO-20i. Although COCO-20i is a more challenging
dataset with a large number of images with realistic scenes,
we still obtain superior performance, which is shown in Ta-
ble 2. Here we follow previous works and only use the
Resnet-50 and Resnet-101 backbones. Table 2 shows that
our method respectively yields the averaged mIoU scores
of 39.3 and 39.1 on the two backbones under the 1-shot set-
ting, outperforming previous best results by a large margin
of 4.8% and 5.7%, respectively. In the 5-shot setting, the
FB-IoU results also verify the superiority of our method,
despite the challenging scenarios.

Limitations. We find that the averaged mIoU results of
our model do not achieve obvious advantages in the 5-shot
setting, compared with previous state-of-the-arts. We ar-
gue that this is reasonable since our method mainly focuses
on eliminating non-target regions instead of segmenting the
target object. As such, although the number of support sam-
ples increases from one to five, it does not introduce addi-
tional non-target information to our method. However, we
hope our work could provide a novel perspective on the op-
posite side of traditional methods for future works.

Qualitative Comparison. We show the qualitative com-
parison of the predicted segmentation masks generated by
our method and a typical traditional model that focuses on
segmenting the target object, i.e., PFENet [31], in Figure 4.
We can see that PFENet could not segment the target ob-
jects accurately due to the distraction of non-target regions.



Table 1. Class mIoU and FB-IoU results of four folds on PASCAL-5i. The results of ‘Mean’ are the averaged class mIoU scores of all four
folds. The detailed FB-IoU results of each fold are omitted in this table for simplicity. Bold indicates the best results.

Backbone Methods 1-Shot 5-Shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

VGG-16

OSLSM [26] 33.6 55.3 40.9 33.5 40.8 61.3 35.9 58.1 42.7 39.1 44.0 61.5
co-FCN [25] 36.7 50.6 44.9 32.4 41.1 60.1 37.5 50.0 44.1 33.9 41.4 60.2
RPMM [37] 47.1 65.8 50.6 48.5 53.0 - 50.0 66.5 51.9 47.6 54.0 -
PFENet [31] 56.9 68.2 54.4 52.4 58.0 72.3 59.0 69.1 54.8 52.9 59.0 72.3
MMNet [35] 57.1 67.2 56.6 52.3 58.3 - 56.6 66.7 63.6 56.5 58.3 -
NTRENet 57.7 67.6 57.1 53.7 59.0 73.1 60.3 68.0 55.2 57.1 60.2 74.2

ResNet-50

CANet [42] 52.5 65.9 51.3 51.9 55.4 66.2 55.5 67.8 51.9 53.2 57.1 69.6
RPMM [37] 55.2 66.9 52.6 50.7 56.3 - 56.3 67.3 54.5 51.0 57.3 -
PFENet [31] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9
SCL [41] 63.0 70.0 56.5 57.7 61.8 71.9 64.5 70.9 57.3 58.7 62.9 72.8
ASGNet [14] 58.8 67.9 56.8 53.7 59.3 69.2 63.7 70.6 64.2 57.4 63.9 74.2
ReRPI [1] 59.8 68.3 62.1 48.5 59.7 - 64.6 71.4 71.1 59.3 66.6 -
SAGNN [36] 64.7 69.6 57.0 57.2 62.1 73.2 64.9 70.0 57.0 59.3 62.8 73.3
MLC [38] 59.2 71.2 65.6 52.5 62.1 - 63.5 71.6 71.2 58.1 66.1 -
NTRENet 65.4 72.3 59.4 59.8 64.2 77.0 66.2 72.8 61.7 62.2 65.7 78.4

ResNet-101

DAN [32] 54.7 68.6 57.8 51.6 58.2 71.9 57.9 69.0 60.1 54.9 60.5 72.3
PPNet [20] 52.7 62.8 57.4 47.7 55.2 70.9 60.3 70.0 69.4 60.7 65.1 77.5
PFENet [31] 60.5 69.4 54.4 55.9 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5
ASGNet [14] 59.8 67.4 55.6 54.4 59.3 71.7 64.6 71.3 64.2 57.3 64.4 75.2
ReRPI [1] 59.6 68.6 62.2 47.2 59.4 - 66.2 71.4 67.0 57.7 65.6 -
MLC [38] 60.8 71.3 61.5 56.9 62.6 - 65.8 74.9 71.4 63.1 68.8 -
NTRENet 65.5 71.8 59.1 58.3 63.7 75.3 67.9 73.2 60.1 66.8 67.0 78.2

Table 2. Class mIoU and FB-IoU results of four folds on COCO-20i. The results of ‘Mean’ are the averaged class mIoU scores of all the
four folds. The detailed FB-IoU results of each fold are omitted in this table for simplicity. Bold indicates the best results.

Backbone Methods 1-Shot 5-Shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

ResNet-50

PPNet [20] 28.1 30.8 29.5 27.7 29.0 - 39.0 40.8 37.1 37.3 38.5 -
RPMM [37] 29.5 36.8 28.9 27.0 30.6 - 33.8 42.0 33.0 33.3 35.5 -
ASGNet [14] - - - - 34.6 60.4 - - - - 42.5 67.0
MMNet [35] 34.9 41.0 37.2 37.0 37.5 - 37.0 40.3 39.3 36.0 38.2 -
MLC [38] 46.8 35.3 26.2 27.1 33.9 - 54.1 41.2 34.1 33.1 40.6 -
NTRENet 36.8 42.6 39.9 37.9 39.3 68.5 38.2 44.1 40.4 38.4 40.3 69.2

ResNet-101

DAN [32] - - - - 24.4 62.3 - - - - 29.6 63.9
SCL [41] 36.4 38.6 37.5 35.4 37.0 - 38.9 40.5 41.5 38.7 39.9 -
PFENet [31] 34.3 33.0 32.3 30.1 32.4 58.6 38.5 38.6 38.2 34.3 37.4 61.9
MLC [38] 50.2 37.8 27.1 30.4 36.4 - 57.0 46.2 37.3 37.2 44.4 -
SAGNN [36] 36.1 41.0 38.2 33.5 37.2 60.9 40.9 48.3 42.6 38.9 42.7 63.4
NTRENet 38.3 40.4 39.5 38.1 39.1 67.5 42.3 44.4 44.2 41.7 43.2 69.6

However, our proposed NTRENet can obtain much more
accurate results with much fewer false positive predictions
in BG and DO regions, thus clearly demonstrating the ef-
fectiveness of our proposed method.

4.4. Ablation Study
Effectiveness of Different Modules. We conduct exten-
sive ablation studies on PASCAL-5i in the 1-shot setting to
validate the effectiveness of our proposed key modules, i.e.,
BGEM, DOEM, and PCL. We remove these three modules
from our NTRENet as the baseline model, which only uses
the support prototype to directly segment the target object
as in [31]. As Table 3 shows, eliminating the BG regions us-
ing BGEM achieves as large as 4% performance improve-
ment compared to the baseline model. Meanwhile, using
DOEM to mine and eliminate DO regions obtains another
2% performance gain. Finally, using the PCL scheme to
boost the model capability of discriminating different ob-
jects leads to further 1% performance improvement. These
results clearly demonstrate the effectiveness of our pro-

Table 3. Ablation study of the key modules in our NERTNet.
mIoU results are reported on the PASCAL-5i dataset under the
1-shot setting.

BGEM DOEM PCL Fold-0 Fold-1 Fold-2 Fold-3 Mean Precision
60.8 68.2 55.4 55.3 60.0 61.9

✓ 63.2 71.1 57.7 57.4 62.4 62.8
✓ ✓ 64.7 71.9 58.8 59.0 63.6 63.3
✓ ✓ ✓ 65.4 72.3 59.4 59.8 64.2 63.6

posed BGEM, DOEM, and PCL. In addition, we use pre-
cision to verify the performance of our method on decreas-
ing false positives. The results show that our full method
achieves 3% precision improvement compared to the base-
line model and all of the proposed BGEM, DOEM, and PCL
can progressively improve the precision, i.e., decrease false
positives.
Choice of negative samples in PCL. The whole non-
target region includes both BG and DO regions. Hence, we
choose other alternative negative samples, i.e., prototypes
generated from the whole non-target region and the BG re-
gion, respectively, to apply in PCL. We conduct compara-



Figure 5. Visualization of different ablative results. From left to right: Support images, the results of baseline, BG prediction, the results of
only using BGEM, DO prediction, the results of using BGEM+DOEM, the results of using BGEM+DOEM+PCL (i.e., full model), Ground
truth.

Table 4. Comparison of the choice of negative samples in PCL.
mIoU results are reported on the PASCAL-5i dataset under the 1-
shot setting.

Negative samples split0 split1 split2 split3 mean
Non-target Prototypes 63.7 69.0 57.8 56.8 61.8

BG Prototypes 64.4 68.7 58.4 58.6 62.6
DO Prototypes 65.4 72.3 59.4 59.8 64.2

tive experiments on PASCAL-5i under the 1-shot setting.
In Table 4, the results show that DO prototypes work more
effectively than others since DO regions are more confusing
and thus play a role of hard negative samples.
Qualitative Comparison. We further show some quali-
tative results in Figure 5 to prove the effectiveness of our
proposed BGEM, DOEM, and PCL in an intuitionistic way.
Column 2 shows predictions from baseline. In column 3,
we show the BG prediction masks obtained from BGMM.
We find that our BGMM can effectively mine the universal
BG regions in query. Column 5 reveals the predicted masks
of DO regions in DOEM. Columns 4 and 6 show that using
BGEM and DOEM can effectively help eliminate the BG
and DO regions compared with the baseline results. Finally,
column 7 indicates that using PCL can further discriminate
the target objects from DOs in detail.
Influence of the Channel Dimension of the BG Proto-
type. The channel dimension of the BG prototype is cru-
cial since it determines how much general BG information it
can encode. We conduct ablation experiments to explore its
optimal value and the results are shown in Figure 6. It shows
that using 512 channels achieves the best performance for
fold 2 and 3, while using 640 channels outperforms other
values for fold 0, 1, and the mean result. Hence, we use 640
channels in the BG prototype in our network setting.

5. Conclusion
We address the few-shot semantic segmentation from

a new perspective and propose a novel NTRE framework

Figure 6. Ablation study on the channel dimension of the BG pro-
totype in the 1-shot setting on the PASCAL-5i dataset. ⋆ indi-
cates the best result of the averaged class mIoU.

to pay attention to BG and DO regions. We propose the
BGMM, BGEM, and DOEM for effectively implementing
the mining and eliminating to the BG and DOs. Particularly,
the BG mining loss is proposed to supervise the learning of
the BGMM and a BG prototype without using BG ground
truth. Besides, PCL is proposed to improve the model abil-
ity for better distinguishing target objects from DOs. Exten-
sive experiments on two benchmark datasets demonstrate
the performance superiority of our method over the previ-
ous methods.
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