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3 Syed Waqas Zamir , Aditya Arora, Salman Khan , Munawar Hayat, Fahad Shahbaz Khan ,
4 Ming-Hsuan Yang , Fellow, IEEE, and Ling Shao , Fellow, IEEE

5 Abstract—Given a degradedQ1 input image, image restoration aims to recover the missing high-quality image content. Numerous
6 applications demand effective image restoration, e.g., computational photography, surveillance, autonomous vehicles, and remote
7 sensing. Significant advances in image restoration have been made in recent years, dominated by convolutional neural networks
8 (CNNs). The widely-used CNN-based methods typically operate either on full-resolution or on progressively low-resolution
9 representations. In the former case, spatial details are preserved but the contextual information cannot be precisely encoded. In the

10 latter case, generated outputs are semantically reliable but spatially less accurate. This paper presents a new architecture with a
11 holistic goal of maintaining spatially-preciseQ3 high-resolution representations through the entire network, and receiving complementary
12 contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing the
13 following key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange
14 across the multi-resolution streams, (c) non-local attention mechanism for capturing contextual information, and (d) attention based
15 multi-scale feature aggregation. Our approach learns an enriched set of features that combines contextual information from multiple
16 scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on six real image benchmark
17 datasets demonstrate that our method, named as MIRNet-v2 , achieves state-of-the-art results for a variety of image processing tasks,
18 including defocus deblurring, image denoising, super-resolution, and image enhancement. The source code and pre-trained models
19 are available at https://github.com/swz30/MIRNetv2.

20 Index Terms—Multi-scale feature representation, dual-pixel defocus deblurring, image denoising, super-resolution, low-light image

21 enhancement, and contrast enhancement

Ç

22 1 INTRODUCTION

23 OWING to the physical limitations of cameras or due to
24 complicated lighting conditions, image degradations of
25 varying severity are often introduced as part of image acqui-
26 sition. For instance, smartphone cameras come with a nar-
27 row aperture and have small sensors with limited dynamic
28 range. Consequently, they frequently generate noisy and
29 low-contrast images. Similarly, images captured under the
30 unsuitable lighting are either too dark or too bright. Image

31restoration aims to recover the original clean image from its
32corrupted measurements. It is an ill-posed inverse problem,
33due to the existence of many possible solutions.
34Recent advances in image restoration and enhancement
35have been led by deep learning models, as they can learn
36strong (generalizable) priors from large-scale datasets. Exist-
37ing CNNs typically follow one of the two architecture
38designs: 1) an encoder-decoder, or 2) high-resolution (single-
39scale) feature processing. The encoder-decoder models [1],
40[2], [3], [4] first progressively map the input to a low-resolu-
41tion representation, and then apply a gradual reverse map-
42ping to the original resolution. Although these approaches
43learn a broad context by spatial-resolution reduction, on the
44downside, the fine spatial details are lost, making it
45extremely hard to recover them in the later stages. On the
46other hand, the high-resolution (single-scale) networks [5],
47[6], [7], [8] do not employ any downsampling operation, and
48thereby recover better spatial details. However, these net-
49works have limited receptive field and are less effective in
50encoding contextual information.
51Image restoration is a position-sensitive procedure,
52where pixel-to-pixel correspondence from the input image
53to the output image is needed. Therefore, it is important to
54remove only the undesired degraded image content, while
55carefully preserving the desired fine spatial details (such as
56true edges and texture). Such functionality for segregating
57the degraded content from the true signal can be better
58incorporated into CNNs with the help of large context, e.g.,
59by enlarging the receptive field. Towards this goal, we
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f60 develop a new multi-scale approach that maintains the origi-

61 nal high-resolution features along the network hierarchy,
62 thus minimizing the loss of precise spatial details. Simulta-
63 neously, our model encodes multi-scale context by using
64 parallel convolution streams that process features at lower
65 spatial resolutions. The multi-resolution parallel branches
66 operate in a manner that is complementary to the main
67 high-resolution branch, thereby providing us more precise
68 and contextually enriched feature representations.
69 One main distinction between our method and the exist-
70 ing multi-scale image processing approaches is how we
71 aggregate contextual information. The existing methods
72 [11], [12], [13] process each scale in isolation. In contrast, we
73 progressively exchange and fuse information from coarse-to-
74 fine resolution-levels. Furthermore, different from existing
75 methods that employ a simple concatenation or averaging
76 of features coming from multi-resolution branches, we
77 introduce a new selective kernel fusion approach that dynam-
78 ically selects the useful set of kernels from each branch rep-
79 resentations using a self-attention mechanism. More
80 importantly, the proposed fusion block combines features
81 with varying receptive fields, while preserving their distinc-
82 tive complementary characteristics.
83 The main contributions of this work include:

84 ! A novel feature extraction model that obtains a com-
85 plementary set of features across multiple spatial
86 scales, while maintaining the original high-resolu-
87 tion features to preserve precise spatial details
88 (Section 3).
89 ! A regularly repeated mechanism for information
90 exchange, where the features from coarse-to-fine res-
91 olution branches are progressively fused together for
92 improved representation learning (Section 3.1).
93 ! A new approach to fuse multi-scale features using a
94 selective kernel network that dynamically combines
95 variable receptive fields and faithfully preserves the
96 original feature information at each spatial resolu-
97 tion (Section 3.1.1).
98 A preliminary version of this work has been published as
99 a conference paper [9]. The MIRNet model [9] is expensive

100 in terms of size and speed. In this work, we make several
101 key modifications to MIRNet [9] that allow us to signifi-
102 cantly reduce the computational cost while enhancing
103 model performance (see Table 1). Specifically, in the pro-
104 posed MIRNet-v2 , (a) We demonstrate feature fusion only
105 in the direction from low- to high-resolution streams per-
106 forms best, and the information flow from high- to low-reso-
107 lution branches can be removed to improve efficiency. (b)
108 We replace the dual attention unit with a new residual con-
109 textual block (RCB). Furthermore, we introduce group

110convolutions in RCB that are capable of learning unique
111representations in each filter group, while being more
112resource efficient than standard convolutions. (c) We
113employ progressive learning to improve training speed: the
114network is trained on small image patches in the early
115epochs and on gradually large patches in the later training
116epochs. (d) We show the effectiveness of the proposed
117design on a new task of dual-pixel defocus deblurring [14]
118alongside the other image processing tasks of image denois-
119ing, super-resolution and image enhancement. Our MIR-
120Net-v2 achieves state-of-the-results on all six datasets.
121Furthermore, we extensively evaluate our approach on
122practical challenges, such as generalization ability across
123datasets (Section 4)
124In Table 1, we compare MIRNet-v2 with MIRNet [9]
125under the same training and inference settings. The results
126show that MIRNet-v2 is more accurate (improving PSNR
127from 39.72 dB to 39.84 dB), while reducing the number of
128parameters and FLOPs by " 81%, convolutions by 36%, and
129activations by 69%. Furthermore, the training and inference
130speed is increased by 2:2# and 3:6# , respectively.

1312 RELATED WORK

132Rapidly growing image content necessitates the need to
133develop effective image restoration and enhancement algo-
134rithms. In this paper, we propose a new method capable of
135performing dual-pixel defocus deblurring, image denoising,
136super-resolution, and image enhancement. Unlike existing
137works for these problems, our approach processes features
138at the original resolution in order to preserve spatial details,
139while effectively fuses contextual information from multiple
140parallel branches. Next, we briefly describe the representa-
141tive methods for each of the studied problems.

1422.1 Dual-Pixel Defocus Deblurring
143Images captured with wide camera aperture have shallow
144depth of field (DoF), where the scene regions that lie outside
145the DoF are out-of-focus. Given an image with defocus blur,
146the goal of defocus deblurring is to generate an all-in-focus
147image. Existing defocus deblurring approaches either
148directly deblur images [14], [15], [16], or first estimate the
149defocus dispartiy map and then use it to guide the deblur-
150ring procedure [17], [18], [19]. Modern cameras are
151equipped with dual-pixel sensor that has two photodiodes
152at each pixel location, thereby generating two sub-aperture
153views. The phase difference between these views is useful
154in measuring the amount of defocus blur at each scene
155point. Recently, Abuolaim et al. [14] presented a dual-pixel
156deblurring dataset (DPDD) and a new method based on
157encoder-decoder design. In this paper our focus is also on

TABLE 1
Comparison Between MIRNet-v2 and MIRNet [9] Under the Same Experimental Settings for Image Denoising Task on the SIDD

Benchmark Dataset [10]

PSNR Params (M) FLOPs (B) Convs Activations (M) Train Time (h) Inference Time (ms)

MIRNet [9] 39.72 31.79 785 635 1270 139 142
MIRNet-v2 (Ours) 39.84 5.9 (81% #) 140 (82% #) 406 (36% #) 390 (69% #) 63 (55% #) 39 (72% #)

FLOPs and inference times are computed on an image of size 256# 256. When compared to MIRNet [9], MIRNet-v2 is more accurate, while being significantly
lighter and faster.
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158 deblurring images directly using the dual-pixel data as
159 in [14], [16]. Previous defocus deblurring works [14], [16]
160 employ the encoder-decoder that repeatedly uses the down-
161 sampling operation, thus causing significant fine detail loss.
162 Whereas the architectural design of our approach enables
163 preservation of desired textural details in the restored
164 image.

165 2.2 Image Denoising
166 Classic denoising methods are mainly based on modifying
167 transform coefficients [20], [21] or averaging neighborhood
168 pixels [22], [23], [24]. Although the classical approaches per-
169 form well, the self-similarity [25] based algorithms, e.g.,
170 NLM [26] and BM3D [27], demonstrate promising denois-
171 ing performance. Numerous patch-based schemes that
172 exploit redundancy (self-similarity) in images are later
173 developed [28], [29], [30], [31]. Recently, deep learning mod-
174 els [6], [9], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
175 [42] make significant advances in image denoising, yielding
176 favorable results than those of the hand-crafted methods.

177 2.3 Image Super-Resolution
178 Prior to the deep-learning era, numerous super-resolution
179 (SR) algorithms have been proposed based on the sampling
180 theory [43], [44], edge-guided interpolation [45], [46], natu-
181 ral image priors [47], [48], patch-exemplars [49], [50] and
182 sparse representations [51], [52]. Currently, deep-learning
183 techniques are being actively explored as they provide dra-
184 matically improved results over conventional algorithms.
185 The data-driven SR approaches differ according to their
186 architecture designs [53], [54], [55]. Early methods [5], [56]
187 take a low-resolution (LR) image as input and learn to
188 directly generate its high-resolution (HR) version. In con-
189 trast to directly producing a latent HR image, recent SR

190networks [57], [58], [59], [60] employ the residual learning
191framework [61] to learn the high-frequency image detail,
192which is later added to the input LR image to produce the
193final result. Other networks designed to perform SR include
194recursive learning [62], [63], [64], progressive reconstruction
195[65], [66], dense connections [7], [67], [68], attention mecha-
196nisms [69], [70], [71], multi-branch learning [66], [72], [73],
197[74], and generative adversarial networks (GANs) [68], [75],
198[76], [77].

1992.4 Image Enhancement
200Oftentimes, cameras generate images that lack vivid details
201or contrast. A number of factors contribute to the low qual-
202ity of images, including unsuitable lighting conditions and
203physical limitations of camera devices. For image enhance-
204ment, histogram equalization is the most commonly used
205approach. However, it frequently produces under- or over-
206enhanced images. Motivated by the Retinex theory [78], sev-
207eral enhancement algorithms mimicking human vision have
208been proposed in the literature [79], [80], [81], [82]. Recently,
209CNNs have been successfully applied to general, as well as
210low-light, image enhancement problems [83]. Notable
211works employ Retinex-inspired networks [4], [84], [85], [86],
212encoder-decoder networks [87], [88], [89], [90], [91], and
213GANs [92], [93], [94].

2143 PROPOSED METHOD

215A schematic of the proposed MIRNet-v2 is shown in Fig. 1.
216We first present an overview of the proposed MIRNet-v2 for
217image restoration and enhancement. We then provide details
218of the multi-scale residual block, which is the fundamental
219building block of our method, containing several key ele-
220ments: (a) parallel multi-resolution convolution streams for
221extracting (fine-to-coarse) semantically-richer and (coarse-to-

Fig. 1. Framework of the proposed MIRNet-v2 that learns enriched feature representations for image restoration and enhancement. MIRNet-v2 is
based on a recursive residual design. In the core of MIRNet-v2 is the multi-scale residual block (MRB) whose main branch is dedicated to maintaining
spatially-precise high-resolution representations through the entire network and the complimentary set of parallel branches provide better contextual-
ized features.
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222 fine) spatially-precise feature representations, (b) information
223 exchange acrossmulti-resolution streams, (c) attention-based
224 aggregation of features arriving from different streams, and
225 (d) residual contextual blocks to extract attention-based
226 features.
227 Overall Pipeline. Given an image I 2 RH#W#3, the pro-
228 posed model first applies a convolutional layer to extract
229 low-level features F0 2 RH#W#C . Next, the feature maps F0
230 pass through N number of recursive residual groups
231 (RRGs), yielding deep features Fn 2 RH#W#C . We note that
232 each RRG contains several multi-scale residual blocks,
233 which is described in Section 3.1. Next, we apply a convolu-
234 tion layer to deep features Fn and obtain a residual image
235 R 2 RH#W#3. Finally, the restored image is obtained as Î ¼
236 Iþ R. We optimize the proposed network using the Char-
237 bonnier loss [95]

LðÎ; I'Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÎ) I'k2 þ "2

q
; (1)

239239

240 where I' denotes the ground-truth image, and " is a con-
241 stant which we empirically set to 10)3 for all the
242 experiments.

243 3.1 Multi-Scale Residual Block
244 To encode context, existing CNNs [1], [96], [97], [98], [99],
245 [100] typically employ the following architecture design: (a)
246 the receptive field of neurons is fixed in each layer/stage, (b)
247 the spatial size of feature maps is gradually reduced to gen-
248 erate a semantically strong low-resolution representation,
249 and (c) a high-resolution representation is gradually recov-
250 ered from the low-resolution representation. However, it is
251 well-understood in vision science that in the primate visual
252 cortex, the sizes of the local receptive fields of neurons in
253 the same region are different [101], [102], [103], [104]. There-
254 fore, a similar mechanism of collecting multi-scale spatial
255 information in the same layer is more effective when incor-
256 porated with in CNNs [105], [106], [107], [108]. Motivated
257 by this, we propose the multi-scale residual block (MRB), as
258 shown in Fig. 1. It is capable of generating a spatially-pre-
259 cise output by maintaining high-resolution representations,
260 while receiving rich contextual information from low-reso-
261 lutions. The MRB consists of multiple (three in this paper)
262 fully-convolutional streams connected in parallel that oper-
263 ate on varying resolution feature maps (ranging from low to
264 high). It allows contextualized-information transfer from
265 the low-resolution streams to consolidate the high-resolu-
266 tion features. Next, we describe the individual components
267 of MRB.

2683.1.1 Selective Kernel Feature Fusion

269One fundamental property of neurons present in the visual
270cortex is their ability to change receptive fields according to
271the stimulus [109]. This mechanism of adaptively adjusting
272receptive fields can be incorporated in CNNs by using
273multi-scale feature generation (in the same layer) followed
274by feature aggregation and selection. The most commonly
275used approaches for feature aggregation include simple
276concatenation or summation. However, these choices pro-
277vide limited expressive power to the network, as reported
278in [109]. In MRB, we introduce a nonlinear procedure for
279fusing features coming from different resolution streams
280using a self-attention mechanism. Motivated by [109], we
281call it selective kernel feature fusion (SKFF).
282The SKFF module performs dynamic adjustment of
283receptive fields via two operations – Fuse and Select, as illus-
284trated in Fig. 2. The fuse operator generates global feature
285descriptors by combining the information from multi-reso-
286lution streams. The select operator uses these descriptors to
287recalibrate the feature maps (of different streams) followed
288by their aggregation. Next, we provide details of both oper-
289ators. (1) Fuse: SKFF receives inputs from two parallel con-
290volution streams carrying different scales of information.
291We first combine these multi-scale features using an ele-
292ment-wise sum as: L ¼ L1 þ L2. We then apply global aver-
293age pooling (GAP) across the spatial dimension of
294L 2 RH#W#C to compute channel-wise statistics s 2 R1#1#C .
295Next, we apply a channel-downscaling convolution layer to
296generate a compact feature representation z 2 R1#1#r,
297where r ¼ C

8 for all our experiments. Finally, the feature vec-
298tor z passes through two parallel channel-upscaling convo-
299lution layers (one for each resolution stream) and provides
300us with two feature descriptors v1 and v2, each with dimen-
301sions 1# 1# C. (2) Select: This operator applies the softmax
302function to v1 and v2, yielding attention activations s1 and
303s2 that we use to adaptively recalibrate multi-scale feature
304maps L1 and L2, respectively. The overall process of feature
305recalibration and aggregation is defined as: U ¼ s1* L1 þ s2 *
306L2. Note that the SKFF uses " 5x fewer parameters than
307aggregation with concatenation but generates more favor-
308able results (an ablation study is provided in the experi-
309ments section).

3103.1.2 Residual Contextual Block

311While the SKFF block fuses information across multi-resolu-
312tion branches, we also need a distillation mechanism to
313extract useful information from within a feature tensor.
314Motivated by the advances of recent low-level vision

Fig. 2. Schematic for selective kernel feature fusion (SKFF). It operates on features from different resolution streams, and performs aggregation
based on self-attention.
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315 methods [32], [69], [70], [71] which incorporate attention
316 mechanisms [110], [111], [112], we propose the residual con-
317 textual block (RCB) to extract features in the convolutional
318 streams. The schematic of RCB is shown in Fig. 3. The RCB
319 suppresses less useful features and only allows more infor-
320 mative ones to pass further. The overall process of RCB is
321 summarized as

FRCB ¼ Fa þWðCMðFbÞÞ; (2)
323323

324 where Fb 2 RH#W#C represents feature maps that are
325 obtained by applying two 3x3 group convolution layers to
326 the input features Fb 2 RH#W#C at the beginning of the
327 RCB. These group convolutions are more resource efficient
328 than standard convolutions and capable of learning unique
329 representations in each filter group. W denotes the last con-
330 volutional layer with filter size 1x1. CM stands for contex-
331 tual module that is realized in three parts. (1) Context
332 modeling: From the original feature maps Fb, we first gener-
333 ate new features Fc 2 R1#1#HW by applying 1x1 convolution
334 followed by the reshaping and softmax operations. Next we
335 reshape Fb to R1#HW#C and perform matrix multiplication
336 with Fc to obtain the global feature descriptor Fd 2 R1#1#C .
337 (2) Feature transform: To capture the inter-channel depen-
338 dencies we pass the descriptor Fd through two 1x1 convolu-
339 tions, resulting in new attention features Fe 2 R1#1#C . (3)
340 Feature fusion: We employ element-wise addition operation
341 to aggregate contextual features Fe to each position of the
342 original features Fb.

343 3.2 Progressive Training Regime
344 When considering the image patch size for network train-
345 ing, there is a trade-off between the training speed and test-
346 time accuracy [113], [114]. On large patches, CNNs capture
347 fine image details to provide improved results, but they are
348 slower to train. Whereas, training on small image patches is
349 faster, but comes at the cost of accuracy drop. To strike the
350 right balance between the training speed and accuracy, we
351 propose a progressive learning method where the network
352 is trained on smaller image patches in the early epochs and
353 on gradually larger patches in the later training epochs.
354 This approach can also be understood as a curriculum
355 learning process where the network sequentially moves
356 from learning a simpler task to a more complex one (where
357 modeling of fine details is required). The progressive learn-
358 ing strategy on mixed-size image patches not only improves
359 the training speed but also enhances the model performance
360 at test time where the input images can be of different sizes
361 (which is common in image restoration problems).

3624 EXPERIMENTS

363In this section, we perform qualitative and quantitative
364assessments of the results produced by our MIRNet-v2 and
365compare it with the state-of-the-art methods. Next, we
366describe the datasets, and then provide the implementa-
367tion details. Finally, we report results for (a) dual-pixel
368defocus deblurring, (b) image denoising, (c) image super-
369resolution and (d) image enhancement, on six real image
370datasets.

3714.1 Real Image Datasets
372Dual-Pixel Defocus Deblurring. DPDD [14] dataset contains
373500 indoor/outdoor scenes captured with a DSLR camera.
374Each scene consists of two defocus blurred sub-aperture
375views captured with a wide camera aperture, and the corre-
376sponding all-in-focus ground truth image captured with a
377narrow aperture. The DDPD dataset is divided into 350
378images for training, 74 images for validation and 76 images
379for testing.
380Image Denoising. (1) DND [115] consists of 50 images cap-
381tured with four consumer cameras. Since the images are of
382very high-resolution, the dataset providers extract 20 crops
383of size 512# 512 from each image, yielding 1000 patches in
384total. All these patches are used for testing (as DND does
385not contain training or validation sets). The ground-truth
386noise-free images are not released publicly, therefore the
387image quality scores in terms of PSNR and SSIM can only
388be obtained through an online server [116].
389(2) SIDD [10] is collected with smartphone cameras. Due
390to the small sensor and high-resolution, the noise levels in
391smartphone images are much higher than those of DSLRs.
392SIDD contains 320 image pairs for training and 1280 for
393validation.
394Super-Resolution. RealSR [117] contains real-world LR-HR
395image pairs of the same scene captured by adjusting the
396focal-length of the cameras. RealSR has both indoor and out-
397door images taken with two cameras. The number of train-
398ing image pairs for scale factors #2, #3 and #4 are 183, 234
399and 178, respectively. For each scale factor, 30 test images
400are also provided in RealSR.
401Image Enhancement. (1) LoL [85] is created for low-light
402image enhancement problem. It provides 485 images for
403training and 15 for testing. Each image pair in LoL consists
404of a low-light input image and its corresponding well-
405exposed reference image.
406(2) MIT-Adobe FiveK [118] contains 5000 images of vari-
407ous indoor and outdoor scenes captured with DSLR cam-
408eras in different lighting conditions. The tonal attributes

Fig. 3. Architecture of residual contextual block (RCB). In the first two group convolution layers, g represents the number of groups. + denotes matrix
multiplication.
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409 of all images are manually adjusted by five different
410 trained photographers (labelled as experts A to E). Simi-
411 lar to [119], [120], [121], we also consider the enhanced
412 images of expert C as the ground-truth. Moreover, the
413 first 4500 images are used for training and the last 500
414 for testing.

4154.2 Implementation Details
416The proposed architecture is end-to-end trainable and
417requires no pre-training of sub-modules. We train four dif-
418ferent networks for four different restoration tasks. For the
419dual-pixel defocus deblurring, we concatenate the left and
420right sub-aperture images and feed them as input to the

TABLE 2
Dual-Pixel Defocus Deblurring Comparisons on the DPDD Dataset [14]

Indoor Scenes Outdoor Scenes Combined

Method PSNR " SSIM " MAE # LPIPS # PSNR " SSIM " MAE # LPIPS # PSNR " SSIM " MAE # LPIPS #
EBDB [17] 25.77 0.772 0.040 0.297 21.25 0.599 0.058 0.373 23.45 0.683 0.049 0.336
DMENet [19] 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
JNB [18] 26.73 0.828 0.031 0.273 21.10 0.608 0.064 0.355 23.84 0.715 0.048 0.315
DPDNet [14] 27.48 0.849 0.029 0.189 22.90 0.726 0.052 0.255 25.13 0.786 0.041 0.223
RDPD [16] 28.10 0.843 0.027 0.210 22.82 0.704 0.053 0.298 25.39 0.772 0.040 0.255
MIRNet-v2 (Ours) 28.96 0.881 0.024 0.154 23.59 0.753 0.049 0.205 26.20 0.816 0.037 0.180

The test set of DPDD contains 37 indoor scenes and 39 outdoor scenes. Best and second best scores are highlighted and underlined, respectively.

Fig. 4. Visual comparisons for dual-pixel defocus deblurring on the DPDD dataset [14]. Compared to the other approaches, our MIRNet-v2 more
effectively removes blur while preserving the fine image details.
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421 network. The training parameters, common to all experi-
422 ments, are the following. We use 4 RRGs, each of which fur-
423 ther contains 2 MRBs. The MRB has 3 parallel streams with
424 channel dimensions of 80; 120; 180 at resolutions 1; 12 ;

1
4 ,

425 respectively. Each stream in MRB has 2 RCBs with shared
426 parameters. The models are trained with the Adam opti-
427 mizer (b1 ¼ 0:9, and b2 ¼ 0:999) for 3# 105 iterations. The

428initial learning rate is set to 2# 10)4. We employ the cosine
429annealing strategy [122] to steadily decrease the learning
430rate from initial value to 10)6 during training. For progres-
431sive training, we use the image patch sizes of 128, 144, 192,
432and 224. The batch size is set to 64 and, for data augmenta-
433tion, we perform horizontal and vertical flips.

4344.3 Dual-Pixel Defocus Deblurring
435We compare the performance of the proposed MIRNet-
436v2 with the conventional defocus deblurring methods
437(EBDB [17] and JNB [18]) as well as the learning-based
438approaches (DMENet [19], DPDNet [14], and RDPD [16]).
439Table 2 shows that our method achieves state-of-the-art
440results for both the indoor and outdoor scene categories. In
441particular, our MIRNet-v2 achieves 0.86 dB PSNR improve-
442ment over the previous best method RDPD [16] on indoor
443images and 0.77 dB on outdoor images. When both scene
444categories are combined, our method shows performance
445gains of 0.81 dB over RDPD [14] and 1.07 dB over the second
446best method DPDNet [14].
447In Fig. 4, we provide defocus-deblurred results produced
448by different methods for both indoor and outdoor scenes. It
449is noticeable that our method effectively removes the spa-
450tially varying defocus blur and produces images that are
451more sharper and visually faithful to the ground-truth than
452those of the compared approaches.

TABLE 3
Denoising Comparisons on SIDD [10] and DND [115] Datasets

SIDD [10] DND [115]

Method PSNR " SSIM " PSNR " SSIM "
DnCNN [6] 23.66 0.583 32.43 0.790
MLP [123] 24.71 0.641 34.23 0.833
BM3D [27] 25.65 0.685 34.51 0.851
CBDNet* [34] 30.78 0.801 38.06 0.942
DAGL [124] 38.94 0.953 39.77 0.956
RIDNet* [32] 38.71 0.951 39.26 0.953
AINDNet* [41] 38.95 0.952 39.37 0.951
VDN [40] 39.28 0.956 39.38 0.952
DeamNet* [125] 39.47 0.957 39.63 0.953
SADNet* [38] 39.46 0.957 39.59 0.952
DANet+* [39] 39.47 0.957 39.58 0.955
CycleISP* [37] 39.52 0.957 39.56 0.956
MIRNet-v2 (Ours) 39.84 0.959 39.86 0.955

' indicates the methods that use additional training data. Whereas our MIR-
Net-v2 is only trained on the SIDD iand directly tested on DND.

Fig. 5. Image denoising comparisons. First two examples are from SIDD [10] and the last is from DND [115]. The proposed MIRNet-v2 better pre-
serves fine texture and structural patterns in the denoised images.
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453 4.4 Image Denoising
454 In this section, we demonstrate the effectiveness of the pro-
455 posed MIRNet-v2 for image denoising. We train our net-
456 work only on the training set of the SIDD [10] and directly
457 evaluate it on the test images of both SIDD and DND [115]
458 datasets. Quantitative comparisons in terms of PSNR and

459SSIM metrics are summarized in Table 3. Our MIRNet-
460v2 performs favourably against the data-driven, as well as
461conventional, denoising algorithms. Specifically, when com-
462pared to the recent best methods, our algorithm demon-
463strates a performance gain of 0.32 dB over CycleISP [37] on
464SIDD and 0.11 dB over DAGL [124] on DND. Furthermore,
465it is worth noting that CycleISP [37] uses additional training
466data, yet our method yields considerably better results.
467Fig. 5 shows a visual comparisons of our results with
468those of other competing algorithms. The MIRNet-v2 is
469effective in removing real noise and produces perceptually-
470pleasing and sharp images. Moreover, it is can maintain the
471spatial smoothness of the homogeneous regions without
472introducing artifacts. In contrast, most of the other methods
473either yield over-smooth images and thus sacrifice struc-
474tural content and fine textural details, or produce images
475with chroma artifacts and blotchy texture.
476Generalization Capability. The DND and SIDD datasets are
477acquired with different sets of cameras having different
478noise characteristics. Since the DND benchmark does not
479provide training data, setting a new state-of-the-art on DND

TABLE 4
Super-Resolution Evaluation on the RealSR Dataset [117]

Scale x2 x3 x4

Method PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 32.61 0.907 29.34 0.841 27.99 0.806
VDSR [57] 33.64 0.917 30.14 0.856 28.63 0.821
SRResNet [77] 33.69 0.919 30.18 0.859 28.67 0.824
RCAN [69] 33.87 0.922 30.40 0.862 28.88 0.826
LP-KPN [117] 33.90 0.927 30.42 0.868 28.92 0.834
MIRNet-v2 (Ours) 34.38 0.934 31.15 0.883 29.16 0.845

Compared to the state-of-the-art, our method consistently yields significantly
better image quality scores for all three scaling factors.

Fig. 6. Comparisons for #4 super-resolution on the RealSR [117] dataset. The image produced by our MIRNet-v2 is more faithful to the ground-truth
than other competing methods (see lines near the right edge of the crops).

Fig. 7. Additional visual examples for #4 super-resolution, comparing our MIRNet-v2 against the state-of-the-art approach [117]. Note that all exam-
ple crops are taken from different images.
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480 with our SIDD trained network indicates the good generali-
481 zation capability of our approach.

482 4.5 Super-Resolution
483 We compare our MIRNet-v2 against the state-of-the-art SR
484 algorithms (VDSR [57], SRResNet [77], RCAN [69], LP-
485 KPN [117]) on the testing images of the RealSR [117] for
486 upscaling factors of #2, #3 and #4. Note that all the bench-
487 marked algorithms are trained on the RealSR [117] dataset
488 for a fair comparison. In the experiments, we also include
489 bicubic interpolation [43], which is the most commonly
490 used method for generating super-resolved images. Here,
491 we compute the PSNR and SSIM scores using the Y channel
492 (in YCbCr color space), as it is a common practice in the SR
493 literature [53], [54], [69], [117]. The results in Table 4 show
494 that the bicubic interpolation provides the least accurate
495 results, thereby indicating its low suitability for dealing
496 with real images. Moreover, the same table shows that the

497recent method LP-KPN [117] achieves marginal improve-
498ment of only " 0:04 dB over the previous best method
499RCAN [69]. In contrast, our method significantly advances
500state-of-the-art and consistently achieves better image qual-
501ity scores than other approaches for all three scaling factors.
502Particularly, compared to LP-KPN [117], our method leads
503to performance gains of 0.48 dB, 0.73 dB, and 0.24 dB for
504scaling factors #2, #3 and #4, respectively. The trend is
505similar for the SSIM metric as well.
506Visual comparisons in Fig. 6 show that our MIRNet-
507v2 can effectively recover content structures. In contrast,
508VDSR [57], SRResNet [77] and RCAN [69] reproduce results
509with noticeable artifacts. Furthermore, LP-KPN [117] is not
510able to preserve structures (see near the right edge of the
511crop). Several more examples are provided in Fig. 7 to fur-
512ther compare the image reproduction quality of our method
513against the previous best method [117]. It can be seen that
514LP-KPN [117] has a tendency to over-enhance the contrast
515(cols. 1, 3, 4) and in turn causes loss of details near dark and
516high-light areas. In contrast, the proposed MIRNet-
517v2 successfully reconstructs structural patterns and edges
518(col. 2) and produces images that are natural (cols. 1, 4) and
519have better color reproduction (col. 5).

5204.6 Image Enhancement
521In this section, we demonstrate the effectiveness of our algo-
522rithm by evaluating it for the image enhancement task. We
523report PSNR/SSIM values of our method and several other

TABLE 5
Low-Light Image Enhancement Evaluation on the LoL Dataset [85]

Method BIMEF CRM Dong LIME MF RRM SRIE Retinex-Net MSR NPE GLAD KinD KinD++ MIRNet-v2

[126] [127] [128] [129] [130] [131] [130] [85] [81] [132] [133] [4] [134] (Ours)

PSNR 13.86 17.20 16.72 16.76 18.79 13.88 11.86 16.77 13.17 16.97 19.72 20.87 21.30 24.74
SSIM 0.577 0.644 0.582 0.564 0.642 0.658 0.498 0.559 0.479 0.589 0.703 0.810 0.822 0.851

The proposed method significantly advances the state-of-the-art.

TABLE 6
Image Enhancement Comparisons on the MIT-Adobe FiveK

Dataset [118]

Method HDRNet
[135]

W-Box
[119]

DR
[120]

DPE
[92]

DeepUPE
[121]

MIRNet-
v2 (Ours)

PSNR 21.96 18.57 20.97 22.15 23.04 23.97
SSIM 0.866 0.701 0.841 0.850 0.893 0.931

Fig. 8. Visual comparison of low-light enhancement approaches on the LoL dataset [85]. The image produced by our method is visually closer to the
ground-truth in terms of brightness and global contrast.
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524 techniques in Tables 5 and 6 for the LoL [85] and MIT-
525 Adobe FiveK [118] datasets, respectively. It can be seen that
526 our MIRNet-v2 achieves significant improvements over pre-
527 vious approaches. Notably, when compared to the recent
528 best methods, MIRNet-v2 obtains 3.44 dB performance gain
529 over KinD++ [134] on the LoL dataset and 0.93 dB improve-
530 ment over DeepUPE1 [121] on the Adobe-Fivek dataset.
531 We show visual results in Figs. 8 and 9. Compared to
532 other techniques, our method generates enhanced images
533 that are natural and vivid in appearance and have better
534 global and local contrast.

5354.7 Ablation Studies
536We study the impact of each of our architectural compo-
537nents and design choices on the final performance. All the
538ablation experiments are performed for the super-resolution
539task with#3 scale factor. The ablation models are trained on
540image patches of size 128# 128 for 105 iterations. Table 7
541shows that removing skip connections causes the largest
542performance drop. Without skip connections, the network
543finds it difficult to converge and yields high training errors,
544and consequently low PSNR. Furthermore, the information
545exchange among parallel convolution streams via SKFF is
546helpful and leads to improved performance. Similarly, RCB
547contributes positively towards the final image quality.
548Table 8 shows that the proposed RCB provides favorable
549performance gain over the baseline Resblock from

Fig. 9. Visual results of image enhancement on the MIT-Adobe FiveK [118] dataset. Compared to the state-of-the-art, our MIRNet-v2 makes better
color and contrast adjustments and produces images that appear vivid, natural and pleasant.

1. Note that the quantitative results reported in [121] are incorrect.
The correct scores are later released by the original authors [link].
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550 EDSR [72]. Moreover, removing the transform part from
551 RCB causes drop in accuracy. Table 8 also shows that
552 replacing the group convolutions with regular convolutions
553 in RCB increases the PSNR score, but at the cost of signifi-
554 cant increase in parameters and FLOPs. Therefore, we opt
555 for RCB with group convolutions (g=2) as a balanced choice.
556 Next, we analyze the feature aggregation strategy in
557 Table 9. It shows that the proposed SKFF generates favor-
558 able results compared to summation and concatenation.
559 Note that our proposed SKFF module uses " 5# fewer
560 parameters than concatenation. Table 10 shows that the pro-
561 gressive learning strategy on mixed-size image patches
562 yields PSNR similar to the model trained on large image
563 patches (ps=224), but takes less time for training. Finally, in
564 Table 11 we study how the number of convolutional
565 streams and columns (RCB blocks) of MRB affect the image
566 restoration quality. We note that increasing the number of
567 streams provides significant improvements, thereby justify-
568 ing the importance of multi-scale features processing. More-
569 over, increasing the number of columns yields better scores,
570 thus indicating the significance of information exchange
571 among parallel streams for feature consolidation.

5725 CONCLUDING REMARKS

573Conventional image restoration and enhancement pipelines
574either stick to the full resolution features along the network
575hierarchy or use an encoder-decoder architecture. The first
576approach helps retain precise spatial details, while the latter
577one provides better contextualized representations. How-
578ever, these methods can satisfy only one of the above two
579requirements, although real-world image restoration tasks
580demand a combination of both conditioned on the given
581input sample. In this work, we propose a novel architecture
582whose main branch is dedicated to full-resolution process-
583ing and the complementary set of parallel branches pro-
584vides better contextualized features. We propose novel
585mechanisms to learn relationships between features within
586each branch as well as across multi-scale branches. Our fea-
587ture fusion strategy ensures that the receptive field can be
588dynamically adapted without sacrificing the original feature
589details. Consistent achievement of state-of-the-art results on
590six datasets for four image restoration and enhancement
591tasks corroborates the effectiveness of our approach.

592REFERENCES

593[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
594networks for biomedical image segmentation,” in Proc. Int. Conf.
595Med. Image Comput. Comput.-Assist. Intervention, 2015, pp. 234–241.
596[2] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, “DeblurGAN-v2:
597Deblurring (orders-of-magnitude) faster and better,” in Proc.
598IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 8877–8886.
599[3] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the
600dark,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
6012018, pp. 3291–3300.
602[4] Y. Zhang, J. Zhang, and X. Guo, “Kindling the darkness: A prac-
603tical low-light image enhancer,” in Proc. 27th ACM Int. Conf. Mul-
604timedia, 2019, pp. 1632–1640.
605[5] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution
606using deep convolutional networks,” IEEE Trans. Pattern Anal.
607Mach. Intell., vol. 38, no. 2, pp. 295–307, Feb. 2016.
608[6] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
609gaussian denoiser: Residual learning of deep CNN for image
610denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–
6113155, Jul. 2017.
612[7] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense
613network for image restoration,” IEEE Trans. Pattern Anal. Mach.
614Intell., vol. 43, no. 7, pp. 2480–2495, Jul. 2021.
615[8] A. Ignatov, N. Kobyshev, R. Timofte, K. Vanhoey, and L. Van
616Gool , “DSLR-quality photos on mobile devices with deep convo-
617lutional networks,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
6182017, pp. 3297–3305.
619[9] S. W. Zamir et al., “Learning enriched features for real image res-
620toration and enhancement,” in Proc. Eur. Conf. Comput. Vis., 2020,
621pp. 492–511.
622[10] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality
623denoising dataset for smartphone cameras,” in Proc. IEEE/CVF
624Conf. Comput. Vis. Pattern Recognit., 2018, pp. 1692–1700.
625[11] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, “Scale-recurrent net-
626work for deep image deblurring,” in Proc. IEEE/CVF Conf. Com-
627put. Vis. Pattern Recognit., 2018, pp. 8174–8182.

TABLE 7
Impact of Individual Components of MRB

Skip connections ✓ ✓ ✓ ✓
RCB ✓ ✓ ✓
SKFF intermediate ✓ ✓ ✓
SKFF final ✓ ✓ ✓ ✓ ✓
PSNR (in dB) 28.21 30.79 30.85 30.68 30.97

TABLE 8
Effect of Individual Components of RCB

PSNR Params (M) FLOPs (B)

Baseline [72], g=2 30.84 5.0 139.5
+ RCB, g=2 30.97 5.9 139.8
RCB w/o transform, g=2 30.92 5.0 139.7
RCB, g=1 31.05 9.7 253.2

Resblock from EDSR [72] is taken as baseline. FLOPs are calculated on an
image of size 256# 256. ‘g’ represents the number of groups in the group
convolutions.

TABLE 9
Feature Aggregation

Sum Concat SKFF

PSNR (in dB) 30.76 30.83 30.97
Parameters 0 8,192 1,536

Our SKFF uses " 5# fewer parameters than ‘Concat’, but generates better
results.

TABLE 10
Effect of Progressive Learning

Patch size 128 144 192 224 Progressive

PSNR (in dB) 30.97 30.99 31.02 31.08 31.06
Train time (h) 14 17 25 33 22

For progressive training, we gradually increase image patch size from 128#
128 to 224# 224.

TABLE 11
Ablation Study on Different Layouts of MRB

PSNR Cols = 1 Cols = 2 Cols = 3

Rows = 1 30.01 30.29 30.47
Rows = 2 30.65 30.79 30.85
Rows = 3 30.73 30.97 31.03

Rows denote the number of parallel resolution streams, and Cols represent the
number of columns containing RCBs.

ZAMIR ET AL.: LEARNING ENRICHED FEATURES FOR FAST IMAGE RESTORATION AND ENHANCEMENT 11



IEEE Proo
f

628 [12] S. Nah, T. H. Kim, and K. M. Lee, “Deep multi-scale convolu-
629 tional neural network for dynamic scene deblurring,” in Proc.
630 IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2017, pp. 257–265.
631 [13] S. Gu, Y. Li, L. V. Gool, and R. Timofte, “Self-guided network for
632 fast image denoising,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
633 2019, pp. 2511–2520.
634 [14] A. Abuolaim and M. S. Brown, “Defocus deblurring using dual-
635 pixel data,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 111126.
636 [15] L. D’Andr!es, J. Salvador, A. Kochale, and S. S€usstrunk, “Non-
637 parametric blur map regression for depth of field extension,”
638 IEEE Trans. Image Process., vol. 25, no. 4, pp. 1660–1673, Apr. 2016.
639 [16] A. Abuolaim, M. Delbracio, D. Kelly, M. S. Brown, and P. Milan-
640 far, “Learning to reduce defocus blur by realistically modeling
641 dual-pixel data,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
642 pp. 2269–2278.
643 [17] A. Karaali and C. R. Jung, “Edge-based defocus blur estimation
644 with adaptive scale selection,” IEEE Trans. Image Process., vol. 27,
645 no. 3, pp. 1126–1137, Mar. 2017.
646 [18] J. Shi, L. Xu, and J. Jia, “Just noticeable defocus blur detection
647 and estimation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
648 Recognit., 2015, pp. 657–665.
649 [19] J. Lee, S. Lee, S. Cho, and S. Lee, “Deep defocus map estimation
650 using domain adaptation,” in Proc. IEEE/CVF Conf. Comput. Vis.
651 Pattern Recognit., 2019, pp. 12214–12222.
652 [20] L. P. Yaroslavsky, “Local adaptive image restoration and
653 enhancement with the use of DFT and DCT in a running win-
654 dow,” in Wavelet Applications Signal Image Processing IV, Belling-
655 ham, WA, USA: SPIE, 1996.
656 [21] E. P. Simoncelli and E. H. Adelson, “Noise removal via Bayesian
657 wavelet coring,” in Proc. IEEE Int. Conf. Image Process., 1996,
658 pp. 379–382.
659 [22] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
660 color images,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 1998,
661 pp. 839–846.
662 [23] P. Perona and J. Malik, “Scale-space and edge detection using
663 anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
664 12, no. 7, pp. 629–639, Jul. 1990.
665 [24] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
666 based noise removal algorithms,” Phys. D: Nonlinear Phenomena,
667 vol. 60, pp. 259–268, 1992.
668 [25] A. A. Efros and T. K. Leung, “Texture synthesis by non-paramet-
669 ric sampling,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 1999,
670 pp. 1033–1038.
671 [26] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for
672 image denoising,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
673 Recognit., 2005, pp. 60–65.
674 [27] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
675 denoising by sparse 3-D transform-domain collaborative filter-
676 ing,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095,
677 Aug. 2007.
678 [28] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with
679 bilateral variance estimation: A low-rank approach,” IEEE Trans.
680 Image Process., vol. 22, no. 2, pp. 700–711, Feb. 2013.
681 [29] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm
682 minimizationwith application to image denoising,” in Proc. IEEE/
683 CVF Conf. Comput. Vis. Pattern Recognit., 2014, pp. 2862–2869.
684 [30] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-
685 local sparse models for image restoration,” in Proc. IEEE/CVF Int.
686 Conf. Comput. Vis., 2009, pp. 2272–2279.
687 [31] R. Hedjam, R. F. Moghaddam, and M. Cheriet, “Markovian clus-
688 tering for the non-local means image denoising,” in Proc. IEEE
689 Int. Conf. Image Process., 2009, pp. 3877–3880.
690 [32] S. Anwar and N. Barnes, “Real image denoising with feature
691 attention,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp.
692 3155–3164.
693 [33] T. Brooks, B.Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T. Barron,
694 “Unprocessing images for learned raw denoising,” in Proc. IEEE/
695 CVFConf. Comput. Vis. Pattern Recognit., 2019, pp. 11028–11037.
696 [34] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convo-
697 lutional blind denoising of real photographs,” in Proc. IEEE/CVF
698 Conf. Comput. Vis. Pattern Recognit., 2019, pp. 1712–1722.
699 [35] T. Pl€otz and S. Roth, “Neural nearest neighbors networks,” in
700 Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018, pp. 1095–1106.
701 [36] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and
702 flexible solution for CNN-Based image denoising,” IEEE Trans.
703 Image Process., vol. 27, no. 9, pp. 4608–4622, Sep. 2018.

704[37] S. W. Zamir et al., “CycleISP: Real image restoration via
705improved data synthesis,” in Proc. IEEE/CVF Conf. Comput. Vis.
706Pattern Recognit., 2020, pp. 2693–2702.
707[38] M. Chang, Q. Li, H. Feng, and Z. Xu, “Spatial-adaptive network
708for single image denoising,” in Proc. Eur. Conf. Comput. Vis.,
7092020, pp. 171–187.
710[39] Z. Yue, Q. Zhao, L. Zhang, and D. Meng, “Dual adversarial net-
711work: Toward real-world noise removal and noise generation,”
712in Proc. Eur. Conf. Comput. Vis., 2020, pp. 41–58.
713[40] Z. Yue, H. Yong, Q. Zhao, D. Meng, and L. Zhang, “Variational
714denoising network: Toward blind noise modeling and removal,”
715inProc. 32nd Int. Conf. Neural Inf. Process. Syst., 2019, pp. 1690–1701.
716[41] Y. Kim, J. W. Soh, G. Y. Park, and Nam I. Cho, “Transfer learning
717from synthetic to real-noise denoising with adaptive instance
718normalization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Rec-
719ognit., 2020, pp. 3479–3489.
720[42] F. Fang, J. Li, Y. Yuan, T. Zeng, and G. Zhang, “Multilevel edge
721features guided network for image denoising,” IEEE Trans. Neu-
722ral Netw. Learn. Syst., vol. 32, no. 9, pp. 3956–3970, Sep. 2021.
723[43] R. Keys, “Cubic convolution interpolation for digital image proc-
724essing,” IEEE Trans. Acoust. Speech Signal Process., vol. 29, no. 6,
725pp. 1153–1160, Dec. 1981.
726[44] M. Irani and S. Peleg, “Improving resolution by image registration,”
727CVGIP: GraphicalModels Image Process., vol. 53, pp. 231–239, 1991.
728[45] J. Allebach and P. W. Wong, “Edge-directed interpolation,” in
729Proc. IEEE Int. Conf. Image Process., 1996, pp. 707–710.
730[46] L. Zhang and X. Wu, “An edge-guided image interpolation algo-
731rithm via directional filtering and data fusion,” IEEE Trans. Image
732Process., vol. 15, no. 8, pp. 2226–2238, Aug. 2006.
733[47] K. I. Kim and Y. Kwon, “Single-image super-resolution using
734sparse regression and natural image prior,” IEEE Trans. Pattern
735Anal. Mach. Intell., vol. 32, no. 6, pp. 1127–1133, Jun. 2010.
736[48] Z. Xiong, X. Sun, and F. Wu, “Robust web image/video super-
737resolution,” IEEE Trans. Image Process., vol. 19, no. 8, pp. 2017–
7382028, Aug. 2010.
739[49] H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through
740neighbor embedding,” in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
741tern Recognit., 2004, pp. I–I.
742[50] G. Freedman and R. Fattal, “Image and video upscaling from
743local self-examples,” ACM Trans. Graph., vol. 20, 2011, Art. no. 12.
744[51] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolu-
745tion via sparse representation,” IEEE Trans. Image Process., vol.
74619, no. 11, pp. 2861–2873, Nov. 2010.
747[52] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution
748as sparse representation of raw image patches,” in Proc. IEEE/
749CVF Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1–8.
750[53] Z. Wang, J. Chen, and S. C. H. Hoi, “Deep learning for image
751super-resolution: A survey,” IEEE Trans. Pattern Anal. Mach.
752Intell., vol. 43, no. 10, pp. 3365–3387, Oct. 2021.
753[54] S. Anwar, S. Khan, and N. Barnes, “A deep journey into super-
754resolution: A survey,” 2019, arXiv.
755[55] J. Cai, S. Gu, R. Timofte, and L. Zhang, “Ntire 2019 challenge on
756real image super-resolution: Methods and results,” in Proc. IEEE/
757CVF Conf. Comput. Vis. Pattern Recognit. Workshops, 2019,
758pp. 2211–2223.
759[56] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convo-
760lutional network for image super-resolution,” in Proc. Eur. Conf.
761Comput. Vis., 2014, pp. 184–199.
762[57] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolu-
763tion using very deep convolutional networks,” in Proc. IEEE/CVF
764Int. Conf. Comput. Vis., 2016, pp. 1646–1654.
765[58] Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent mem-
766ory network for image restoration,” in Proc. IEEE/CVF Int. Conf.
767Comput. Vis., 2017, pp. 4549–4557.
768[59] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep
769recursive residual network,” in Proc. IEEE/CVF Conf. Comput.
770Vis. Pattern Recognit., 2017, pp. 2790–2798.
771[60] Z. Hui, X. Wang, and X. Gao, “Fast and accurate single image
772super-resolution via information distillation network,” in Proc.
773IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 723–731.
774[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
775image recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
776Recognit., 2016, pp. 770–778.
777[62] J. Kim, J. K. Lee, and K. Mu Lee , “Deeply-recursive convolu-
778tional network for image super-resolution,” in Proc. IEEE/CVF
779Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1637–1645.

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE



IEEE Proo
f

780 [63] W. Han, S. Chang, D. Liu, M. Yu, M. Witbrock, and T. S. Huang,
781 “Image super-resolution via dual-state recurrent networks,” in
782 Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018,
783 pp. 1654–1663.
784 [64] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and light-
785 weight super-resolution with cascading residual network,” in
786 Proc. Eur. Conf. Comput. Vis., 2018.Q2
787 [65] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks
788 for image super-resolution with sparse prior,” in Proc. IEEE/CVF
789 Int. Conf. Comput. Vis., 2015, pp. 370–378.
790 [66] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep lapla-
791 cian pyramid networks for fast and accurate superresolution,” in
792 Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2017,
793 pp. 5835–5843.
794 [67] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using
795 dense skip connections,” in Proc. IEEE/CVF Int. Conf. Comput.
796 Vis., 2017, pp. 4809–4817.
797 [68] X. Wang et al., “ESRGAN: Enhanced super-resolution generative
798 adversarial networks,” in Proc. Eur. Conf. Comput. Vis. Workshops,
799 2018, pp. 63–79.
800 [69] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image
801 super-resolution using very deep residual channel attention
802 networks,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 219–224.
803 [70] T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, “Second-order
804 attention network for single image super-resolution,” in Proc.
805 IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 11057–
806 11066.
807 [71] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, “Residual non-local
808 attention networks for image restoration,” in Proc. Int. Conf.
809 Learn. Representations, 2019.
810 [72] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee , “Enhanced deep
811 residual networks for single image super-resolution,” in Proc.
812 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops, 2017,
813 pp. 1132–1140.
814 [73] R.Dahl,M.Norouzi, and J. Shlens, “Pixel recursive super resolution,”
815 inProc. IEEE/CVF Int. Conf. Comput. Vis., 2017, pp. 5449–5458.
816 [74] J. Li, F. Fang, K. Mei, and G. Zhang, “Multi-scale residual net-
817 work for image super-resolution,” in Proc. Eur. Conf. Comput.
818 Vis., 2018, pp. 2006–2013.
819 [75] S.-J. Park, H. Son, S. Cho, K.-S. Hong, and S. Lee, “SRFEAT: Sin-
820 gle image super-resolution with feature discrimination,” in Proc.
821 Eur. Conf. Comput. Vis., 2018, pp. 455–471.
822 [76] M. S. M. Sajjadi, B. Scholkopf, and M. Hirsch, “Enhancenet: Single
823 image super-resolution through automated texture synthesis,” in
824 Proc. IEEE/CVF Int. Conf. Comput. Vis., 2017, pp. 4501–4510.
825 [77] C. Ledig et al., “Photo-realistic single image super-resolution
826 using a generative adversarial network,” in Proc. IEEE/CVF Conf.
827 Comput. Vis. Pattern Recognit., 2017, pp. 105–114.
828 [78] E. H. Land, “The retinex theory of color vision,” Sci. Amer., vol.
829 237, pp. 108–129, 1977.
830 [79] M. Bertalm#ıo, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual
831 color correction through variational techniques,” IEEE Trans.
832 Image Process., vol. 16, no. 4, pp. 1058–1072, Apr. 2007.
833 [80] R. Palma-Amestoy , E. Provenzi, M. Bertalm#ıo, and V. Caselles,
834 “A perceptually inspired variational framework for color
835 enhancement,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31,
836 no. 3, pp. 458–474, Mar. 2009.
837 [81] D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “Amultiscale ret-
838 inex for bridging the gap between color images and the human
839 observation of scenes,” IEEE Trans. Image Process., vol. 6, no. 7,
840 pp. 965–976, Jul. 1997.
841 [82] A. Rizzi, C. Gatta, and D. Marini, “From retinex to automatic
842 color equalization: Issues in developing a new algorithm for
843 unsupervised color equalization,” in Journal Electronic Imaging,
844 Bellingham, WA, USA: SPIE, 2004.
845 [83] A. Ignatov and R. Timofte, “NTIRE 2019 challenge on image
846 enhancement: Methods and results,” in Proc. IEEE/CVF Conf.
847 Comput. Vis. Pattern Recognit. Workshops, 2019, pp. 2224–2232.
848 [84] L. Shen, Z. Yue, F. Feng, Q. Chen, S. Liu, and J. Ma, “MSR-net:
849 Low-light image enhancement using deep convolutional
850 network,” arXiv, 2017.
851 [85] C. Wei, W. Wang, W. Yang, and J. Liu, “Deep retinex decomposi-
852 tion for low-light enhancement,” in Proc. Brit. Mach. Vis. Conf.,
853 2018.

854[86] H. Chang, M. K. Ng, W. Wang, and T. Zeng, “Retinex image
855enhancement via a learned dictionary,” Optical Engineering,
856Bellingham, WA, USA: SPIE, 2015.
857[87] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
858“Encoder-decoder with atrous separable convolution for seman-
859tic image segmentation,” in Proc. Eur. Conf. Comput. Vis., 2018,
860pp. 833–851.
861[88] K. G. Lore, A. Akintayo, and S. Sarkar, “LLNet: A deep autoen-
862coder approach to natural low-light image enhancement,” Pat-
863tern Recognit., vol. 61, pp. 650–662, 2017.
864[89] W. Ren et al., “Low-light image enhancement via a deep hybrid
865network,” IEEE Trans. Image Process., vol. 29, no. 9, pp. 4364–
8664375, Sep. 2019.
867[90] K. Mei, J. Li, J. Zhang, H. Wu, J. Li, and R. Huang, “Higher-reso-
868lution network for image demosaicing and enhancing,” in Proc.
869IEEE/CVF Int. Conf. Comput. Vis. Workshop, 2019, pp. 3441–3448.
870[91] J. Li, J. Li, F. Fang, F. Li, and G. Zhang, “Luminance-aware pyra-
871mid network for low-light image enhancement,” IEEE Trans.
872Multimedia, vol. 23, pp. 3153–3165, 2020.
873[92] Y.-S. Chen, Y.-C. Wang, M.-H. Kao, and Y.-Y. Chuang, “Deep
874photo enhancer: Unpaired learning for image enhancement from
875photographs with gans,” in Proc. IEEE/CVF Conf. Comput. Vis.
876Pattern Recognit., 2018, pp. 6306–6314.
877[93] A. Ignatov, N. Kobyshev, R. Timofte, K. Vanhoey, and L. Van
878Gool , “WESPE: Weakly supervised photo enhancer for digital
879cameras,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
880Workshops, 2018, pp. 804–809.
881[94] Y. Deng, C. C. Loy, and X. Tang, “Aesthetic-driven image
882enhancement by adversarial learning,” in Proc. 26th ACM Int.
883Conf. Multimedia, 2018, pp. 870–878.
884[95] P. Charbonnier, L. Blanc-Feraud , G. Aubert, and M. Barlaud,
885“Two deterministic half-quadratic regularization algorithms for
886computed imaging,” in Proc. IEEE Int. Conf. Image Process., 1994,
887pp. 168–172.
888[96] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks
889for human pose estimation,” in Proc. Eur. Conf. Comput. Vis.,
8902016, pp. 483–499.
891[97] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
892for semantic segmentation,” in Proc. IEEE/CVF Int. Conf. Comput.
893Vis., 2015, pp. 1520–1528.
894[98] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose
895estimation and tracking,” in Proc. Eur. Conf. Comput. Vis., 2018,
896pp. 472–487.
897[99] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep con-
898volutional encoder-decoder architecture for image segmentation,”
899IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
900Dec. 2017.
901[100] X. Peng, R. S. Feris, X. Wang, and D. N. Metaxas, “A recurrent
902encoder-decoder network for sequential face alignment,” in Proc.
903Eur. Conf. Comput. Vis., 2016.
904[101] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular inter-
905action and functional architecture in the cat’s visual cortex,”
906J. Physiol., vol. 160, pp. 106154, 1962.
907[102] M. Riesenhuber andT. Poggio, “Hierarchicalmodels of object recog-
908nition in cortex,”NatureNeurosci., vol. 2, pp. 1019–1025, 1999.
909[103] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio,
910“Robust object recognition with cortex-like mechanisms,” IEEE
911Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pp. 411–426, Mar.
9122007.
913[104] C. P. Hung, G. Kreiman, T. Poggio, and J. J. DiCarlo , “Fast read-
914out of object identity from macaque inferior temporal cortex,”
915Science, vol. 310, pp. 863–866, 2005.
916[105] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q.
917Weinberger, “Multi-scale dense networks for resource efficient
918image classification,” in Proc. Int. Conf. Learn. Representations,
9192018.
920[106] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution repre-
921sentation learning for human pose estimation,” in Proc. IEEE/CVF
922Conf. Comput. Vis. Pattern Recognit., 2019, pp. 5686–5696.
923[107] D. Fourure, R. Emonet, #E. Fromont, D. Muselet, A. Tr#emeau, and
924C. Wolf, “Residual conv-deconv grid network for semantic
925segmentation,” in Proc. Brit. Mach. Vis. Conf., 2017.
926[108] C. Szegedy et al., “Going deeper with convolutions,” in Proc.
927IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

ZAMIR ET AL.: LEARNING ENRICHED FEATURES FOR FAST IMAGE RESTORATION AND ENHANCEMENT 13



IEEE Proo
f

928 [109] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,”
929 in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
930 pp. 510–519.
931 [110] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
932 in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018,
933 pp. 7132–7141.
934 [111] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
935 networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
936 2018, pp. 7794–7803.
937 [112] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “Global context
938 networks,” IEEE Trans. Pattern Anal. Mach. Intell., early access,
939 Dec. 24, 2020, doi: 10.1109/TPAMI.2020.3047209.Q4
940 [113] E. Hoffer, B. Weinstein, I. Hubara, T. Ben-Nun , T. Hoefler, and
941 D. Soudry, “Mix & match: Training convnets with mixed image
942 sizes for improved accuracy, speed and scale resiliency,” 2019,
943 arXiv:1908.08986.
944 [114] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for
945 convolutional neural networks,” in Proc. Int. Conf. Mach. Learn.,
946 2019.
947 [115] T. Plotz and S. Roth, “Benchmarking denoising algorithms with
948 real photographs,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
949 Recognit., 2017, pp. 2750–2759.
950 [116] 2017, Accessed: Feb. 29, 2020. [Online]. Available: https://noise.
951 visinf.tu-darmstadt.de/benchmark/
952 [117] J. Cai, H. Zeng, H. Yong, Z. Cao, and L. Zhang, “Toward real-
953 world single image super-resolution: A new benchmark and a
954 new model,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
955 pp. 3086–3095.
956 [118] V. Bychkovsky, S. Paris, E. Chan, and F. Durand, “Learning pho-
957 tographic global tonal adjustment with a database of input/out-
958 put image pairs,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
959 Recognit., 2011, pp. 97–104.
960 [119] Y. Hu, H. He, C. Xu, B. Wang, and S. Lin, “Exposure: A white-
961 box photo post-processing framework,” ACM Trans. Graph., vol.
962 37, 2018.
963 [120] J. Park, J.-Y. Lee, D. Yoo, and I. So Kweon , “Distort-and-recover:
964 Color enhancement using deep reinforcement learning,” in Proc.
965 IEEE/CVFConf. Comput. Vis. Pattern Recognit., 2018, pp. 5928–5936.
966 [121] R. Wang, Q. Zhang, C.-W. Fu, X. Shen, W.-S. Zheng, and J. Jia,
967 “Underexposed photo enhancement using deep illumination
968 estimation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
969 nit., 2019, pp. 6842–6850.
970 [122] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent
971 with warm restarts,” in Proc. Int. Conf. Learn. Representations,
972 2017.
973 [123] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising:
974 Can plain neural networks compete with BM3D?,” in Proc. IEEE/
975 CVF Conf. Comput. Vis. Pattern Recognit., 2012, pp. 2392–2399.
976 [124] C. Mou, J. Zhang, and Z. Wu, “Dynamic attentive graph learning
977 for image restoration,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
978 2021, pp. 4308–4317.
979 [125] C. Ren, X. He, C. Wang, and Z. Zhao, “Adaptive consistency
980 prior based deep network for image denoising,” in Proc. IEEE/
981 CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 8592–8602.
982 [126] Z. Ying, G. Li, and W. Gao, “A bio-inspired multi-exposure
983 fusion framework for low-light image enhancement,” 2017,
984 arXiv:1711.00591.
985 [127] Z. Ying, G. Li, Y. Ren, R. Wang, and W. Wang, “A new image
986 contrast enhancement algorithm using exposure fusion frame-
987 work,” in Proc. Int. Conf. Comput. Anal. Images Patterns, 2017.
988 [128] X. Dong, G. Wang, Y. Pang, W. Li, J. Wen, W. Meng, and Y. Lu,
989 “Fast efficient algorithm for enhancement of low lighting video,”
990 in Proc. IEEE Int. Conf. Multimedia Expo, 2011, pp. 1–6.
991 [129] X. Guo, Y. Li, and H. Ling, “LIME: Low-light image enhance-
992 ment via illumination map estimation,” IEEE Trans. Image Pro-
993 cess., vol. 26, no. 2, pp. 982–993, Feb. 2017.
994 [130] X. Fu, D. Zeng, Y. Huang, X.-P. Zhang, and X. Ding, “A weighted
995 variational model for simultaneous reflectance and illumination
996 estimation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
997 nit., 2016, pp. 2782–2790.
998 [131] Y. Liu, R. Wang, S. Shan, and X. Chen, “Structure inference net:
999 Object detection using scene-level context and instance-level

1000 relationships,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Rec-
1001 ognit., 2018, pp. 6985–6994.

1002[132] S. Wang, J. Zheng, H.-M. Hu, and B. Li, “Naturalness preserved
1003enhancement algorithm for non-uniform illumination images,”
1004IEEE Trans. Image Process., vol. 22, no. 9, pp. 3538–3548, Sep. 2013.
1005[133] W. Wang, C. Wei, W. Yang, and J. Liu, “GLADNet: Low-light
1006enhancement network with global awareness,” in Proc. 13th IEEE
1007Int. Conf. Autom. Face Gesture Recognit., 2018, pp. 751–755.
1008[134] Y. Zhang, X. Guo, J. Ma, W. Liu, and J. Zhang, “Beyond brighten-
1009ing low-light images,” Int. J. Comput. Vis., vol. 129, pp. 1013–
10101037, 2021.
1011[135] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand,
1012“Deep bilateral learning for real-time image enhancement,”
1013ACM Trans. Graph., vol. 118, 2017, Art. no. 118.

1014Syed Waqas Zamir received the PhD degree
1015from the University Pompeu Fabra, Barcelona,
1016Spain, in 2017. He is a research scientist with the
1017Inception Institute of Artificial Intelligence, UAE.
1018His research interests include low-level computer
1019vision, computational imaging, image and video
1020processing, color vision and image restoration
1021and enhancement.

1022Aditya Arora is a research engineer with the
1023Inception Institute of Artificial Intelligence, UAE.
1024His research interests include image and video
1025processing, computational photography, and low-
1026level vision.

1027Salman Khan received the PhD degree from the
1028University of Western Australia, Perth, Australia,
1029in 2016. He is an assistant professor with the
1030MBZ University of Artificial Intelligence. He has
1031been an adjunct faculty member with Australian
1032National University since 2016. He has been
1033awarded the outstanding reviewer award at
1034CVPR multiple times, won the Best Paper Award
1035at 9th ICPRAM 2020, and 2nd prize in the NTIRE
1036Image Enhancement Competition at CVPR 2019.
1037He served as a program committee member for
1038several premier conferences including CVPR, ICCV, ICLR, ECCV, and
1039NeurIPS. His thesis received an honorable mention on the Dean’s List
1040Award. His research interests include computer vision and machine
1041learning.
1042

1043Munawar Hayat received the PhD degree from
1044the University of Western Australia (UWA), Perth,
1045Australia. His PhD thesis received multiple
1046awards, including the Deans List Honorable Men-
1047tion Award and the Robert Street Prize. After his
1048PhD, he joined IBM Research as a postdoc and
1049then moved to the University of Canberra as an
1050assistant professor. He is currently a senior sci-
1051entist with the Inception Institute of Artificial Intel-
1052ligence, UAE. He was granted two U.S. patents,
1053and has published more than 30 papers at lead-
1054ing venues in his field, including the IEEE Transactions on Pattern Anal-
1055ysis and Machine Intelligence, International Journal of Computer Vision,
1056CVPR, ECCV, and ICCV. His research interests include computer vision
1057and machine/deep learning.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE



IEEE Proo
f

1058 Fahad Shahbaz Khan received the MSc degree
1059 in intelligent systems design from the Chalmers
1060 University of Technology, Gothenburg, Sweden,
1061 and the PhD degree in computer vision from the
1062 Autonomous University of Barcelona, Bellaterra,
1063 Spain. He is a faculty member with MBZUAI, UAE
1064 and Linkoping University, Sweden. From 2018 to
1065 2020, he worked as a lead scientist with the Incep-
1066 tion Institute of Artificial Intelligence (IIAI), Abu
1067 Dhabi, United Arab Emirates. He has achieved
1068 top ranks on various international challenges
1069 (Visual Object Tracking VOT: 1st 2014 and 2018, 2nd 2015, 1st 2016;
1070 VOT-TIR: 1st 2015 and 2016; OpenCV Tracking: 1st 2015; 1st PASCAL
1071 VOC 2010). His research interests include a wide range of topics within
1072 computer vision and machine learning, such as object recognition, object
1073 detection, action recognition, and visual tracking. He has published
1074 articles in high-impact computer vision journals and conferences in these
1075 areas. He serves as a regular program committee member for leading
1076 computer vision conferences such as CVPR, ICCV, and ECCV.

1077 Ming-Hsuan Yang (Fellow, IEEE) is affiliated
1078 with Google, UC Merced, and Yonsei University.
1079 He serves as a program co-chair of IEEE Interna-
1080 tional Conference on Computer Vision (ICCV) in
1081 2019, program co-chair of Asian Conference on
1082 Computer Vision (ACCV) in 2014, and general
1083 co-chair of ACCV 2016. He served as an associ-
1084 ate editor of the IEEE Transactions on Pattern
1085 Analysis and Machine Intelligence, and is an
1086 associate editor of the International Journal of
1087 Computer Vision, Image and Vision Computing
1088 and Journal of Artificial Intelligence Research. He received the NSF
1089 CAREER award and Google Faculty Award.

1090Ling Shao (Fellow, IEEE) is the chief scientist
1091with Terminus Group and the president of Termi-
1092nus International. He was the founding CEO and
1093chief scientist with the Inception Institute of Artifi-
1094cial Intelligence, Abu Dhabi, UAE. His research
1095interests include computer vision, deep learning,
1096medical imaging and vision and language. He is a
1097fellow of the IAPR, BCS, and IET.

1098" For more information on this or any other computing topic,
1099please visit our Digital Library at www.computer.org/csdl.

ZAMIR ET AL.: LEARNING ENRICHED FEATURES FOR FAST IMAGE RESTORATION AND ENHANCEMENT 15


