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Abstract

Recent studies show that, both explicit deep feature
matching as well as large-scale and diverse training data
can significantly improve the generalization of person re-
identification. However, the efficiency of learning deep
matchers on large-scale data has not yet been adequately
studied. Though learning with classification parameters
or class memory is a popular way, it incurs large memory
and computational costs. In contrast, pairwise deep met-
ric learning within mini batches would be a better choice.
However, the most popular random sampling method, the
well-known PK sampler, is not informative and efficient for
deep metric learning. Though online hard example min-
ing has improved the learning efficiency to some extent,
the mining in mini batches after random sampling is still
limited. This inspires us to explore the use of hard ex-
ample mining earlier, in the data sampling stage. To do
so, in this paper, we propose an efficient mini-batch sam-
pling method, called graph sampling (GS), for large-scale
deep metric learning. The basic idea is to build a near-
est neighbor relationship graph for all classes at the be-
ginning of each epoch. Then, each mini batch is com-
posed of a randomly selected class and its nearest neigh-
boring classes so as to provide informative and challeng-
ing examples for learning. Together with an adapted com-
petitive baseline, we improve the state of the art in gen-
eralizable person re-identification significantly, by 25.1%
in Rank-1 on MSMT17 when trained on RandPerson. Be-
sides, the proposed method also outperforms the compet-
itive baseline, by 6.8% in Rank-1 on CUHK03-NP when
trained on MSMT17. Meanwhile, the training time is sig-
nificantly reduced, from 25.4 hours to 2 hours when trained
on RandPerson with 8,000 identities. Code is available at
https://github.com/ShengcaiLiao/QAConv .

*Shengcai Liao is the corresponding author.

1. Introduction

Person re-identification is a popular computer vision
task, where the goal is to find a person, given in a query
image, from the search over a large set of gallery images.
In the last two years, generalizable person re-identification
has gain increasing attention due to both its research and
practical value [11, 12, 17, 21, 26, 46, 48]. This task stud-
ies the generalizability of a learned person re-identification
model in unseen scenarios, and employs direct cross-dataset
evaluation [10, 38] for performance benchmarking.

For deep metric learning, beyond feature representation
learning and loss designs, explicit deep feature matching
schemes are shown to be effective for matching person im-
ages [1, 14, 17, 24, 28], due to the advantages in address-
ing pose and viewpoint changes, occlusions, and misalign-
ments. In particular, a recent method, called query-adaptive
convolution (QAConv) [17], has proved that explicit convo-
lutional matching between gallery and query feature maps
is quite effective for generalizable person re-identification.
However, these methods all require more computational
costs compared to conventional feature learning methods.

Beyond novel generalizable algorithms, another way to
improve generalization is to enlarge the scale and diversity
of the training data. For example, a recent dataset called
RandPerson [33] synthesized 8,000 identities, while [31]
and [2] both collected 30K persons for re-identification
training. These studies all observed improved generaliza-
tion ability for person re-identification. However, the effi-
ciency of deep metric learning from large-scale data has not
yet been adequately studied in person re-identification.

There are some popular ways of learning deep person
re-identification models, including classification (with the
ID loss [43]), metric learning (with a pairwise loss [5, 38]
or triplet loss [9]), and their combinations (e.g. ID + triplet
loss). Using an ID loss is convenient for classification learn-
ing. However, in large-scale deep learning, involving clas-
sifier parameters incurs large memory and computational
costs in both the forward and backward passes. Similarly,



(a) PK sampler (b) GS sampler

Figure 1. Two different sampling methods: (a) PK sampler; and (b) the proposed GS sampler. Different shapes indicate different classes,
while different colors indicate different batches. GS constructs a graph for all classes and always samples nearest neighboring classes.

involving class signatures for metric learning in a global
view is also not efficient. For example, QAConv in [17] is
difficult to scale up for large-scale training, because a class
memory module is designed, where full feature maps are
stored for all classes as signatures, and they are required for
cross feature map convolutional matching during training.

Therefore, involving class parameters or signatures in
either classification or metric learning is not efficient for
large-scale person re-identification training. In contrast, we
consider that pairwise deep metric learning between sam-
ples in mini batches is better suited for this task. Accord-
ingly, the batch sampler plays an important role for effi-
cient learning [9, 37]. The well-known PK sampler [9, 22]
is the most popular random sampling method in person re-
identification. It first randomly selects P classes, and then
randomly samples K images per class to construct a mini
batch of size B = P × K. Since this is performed ran-
domly, the sampled instances within a mini batch are uni-
formly distributed across the whole dataset (see Fig. 1 (a)),
and might therefore not be informative and efficient for deep
metric learning. To address this, an online hard example
mining method was proposed in [9], which improved the
learning efficiency to some extent. However, the mining
is performed online on the already sampled mini batches.
Therefore, this method is still limited by the fully random
PK sampler, because the mini batches obtained by this sam-
pler do not consider the sample relationship information.

To address this, we propose to shift the hard example
mining earlier to the data sampling stage. Accordingly,
we propose an efficient mini-batch sampling method, called
graph sampling (GS), for large-scale deep metric learning.
The basic idea is to build a nearest neighbor relationship
graph for all classes at the beginning of each epoch. Then,
the mini-batch sampling is performed by randomly select-
ing a class as anchor, and its top-k nearest neighboring
classes, with the same K instances per class, as shown in
Fig. 1 (b). This way, instances within a sampled mini batch
are mostly similar to each other, so as to provide informative
and challenging examples for discriminant learning. From
face recognition loss function studies [4,19,35], it is known
that focusing on boundary (hard) examples helps improving

the discriminant ability of the learned model, and helps re-
sulting in compact representations that generalize well be-
yond the training data. The GS sampler shares a similar
idea in focusing on nearest neighboring classes, and thus
has a potential of improving the discrimination and gener-
alization ability of the learned model.

In summary, the contributions of this paper include: (1)
We propose a new mini-batch sampling method, termed GS,
and prove that it enables more efficient learning than the
well-known PK sampler; (2) We improve a very competitive
baseline by 6.8% in Rank-1 with MSMT17 → CUHK03-
NP, and reduce the training time significantly, from 25.4
hours to 2 hours on RandPerson with 8,000 identities; and
(3) Together with the baseline, we improve the state of the
art in generalizable person re-identification significantly, by
20.6% in Rank-1 with Market-1501 → MSMT17, and by
25.1% in Rank-1 with RandPerson→MSMT17.

2. Related Work
Metric learning approaches have been widely studied in

the early stage of person re-identification. Many algorithms
have been proposed, such as the well-known PRDC [44],
KISSME [13], and XQDA [16], to name a few. In recent
years, deep metric learning in particular has become popu-
lar and been extensively studied. Beyond feature represen-
tation learning, specific deep metric learning can be roughly
classified in terms of loss function designs and deep feature
matching schemes. For loss function designs, pairwise loss
functions [5, 38], classification or identification loss [43],
and triplet loss [9, 22, 44] are the most popular. For deep
feature matching schemes, a number of methods have been
proposed in the literature. For example, Ahmed et al. pro-
posed a deep convolutional architecture with layers specif-
ically designed for local neighborhood matching [1]. Li et
al. proposed a novel filter pairing neural network (FPNN)
to jointly handle several known challenges, such as mis-
alignment and occlusions [14]. Shen et al. proposed an
end-to-end deep Kronecker-Product Matching (KPM) net-
work [24] for softly aligned matching. Suh et al. proposed
a deep neural network to learn part-aligned bilinear repre-
sentations [28]. Liao and Shao proposed the query-adaptive



convolution (QAConv) for explicit deep feature matching,
and proved its effectiveness for generalizable person re-
identification [17]. They also proposed a Transformer based
method, TransMatcher [18], for improved performance.

Generalizable person re-identification was initially stud-
ied in [10, 38], where direct cross-dataset evaluation was
proposed to benchmark algorithms. With advancements
in deep learning, this task has gained increasing attention
in recent years. For example, Song et al. [26] proposed
a domain-invariant mapping network with a meta-learning
pipeline. Jia et al. [11] adopted both instance and fea-
ture normalization to alleviate both style and content vari-
ances across datasets. Zhou et al. proposed a new back-
bone network called OSNet [46], and further demonstrated
its advantages in generalizing deep models [46]. Jin et
al. proposed a style normalization and restitution module,
which shows good generalizability [12]. Yuan et al. pro-
posed an adversarial domain-invariant feature learning net-
work (ADIN), which explicitly learns to separate identity-
related features from challenging variations [39]. Zhuang
et al. proposed a camera-based batch normalization (CBN)
method for domain-invariant representation learning [48].
Recently, meta-learning has also been shown to be effec-
tive for learning generalizable models. For example, Zhao
et al. proposed memory-based multi-source meta-learning
(M3L) for generalizing to unseen domains [41]. Choi et
al. proposed the MetaBIN algorithm for meta-training the
batch-instance normalization nettwork [3]. Bai et al. pro-
posed a dual-meta generalization network and a large-scale
dataset called Person30K for person re-identification [2]. In
addition to the above, Wang et al. proposed a large-scale
synthetic person re-identification dataset, called RandPer-
son, and proved that models learned from synthesized data
generalize well to real-world datasets [33].

However, the generalization of current methods is still
far from satisfactory for practical person re-identification.
Taking face recognition as a good example in practice, fu-
ture directions may gradually be learning from more large-
scale data for better performance. However, the efficiency
of large-scale learning has been inadequately studied in per-
son re-identification. As basic as the mini-batch sampler,
though it plays an important role in deep metric learning
[9, 36, 37], it still has not yet been much studied.

Beyond online hard example mining within mini batches
[9], several methods have been proposed for hard exam-
ple mining during data sampling for mini batches. Suh
et al. [27] proposed a stochastic class-based hard example
mining for deep metric learning. It uses learnable class
signatures to find nearest classes, and further performs an
instance-level refined search within the subset of classes
found in the first stage for hard example mining. Besides,
the Doppelganger [25] also relies on classification layers
for doppelganger mining from the predicted classification

scores. However, these methods require classification pa-
rameters to be learned for class mining, which is intractable
for large-scale classes and complex non-Euclidean matchers
(e.g. QAConv). In [30], all training classes are divided into
subspaces by clustering on averaged class representations,
and then mini batches are sampled within each subspace.
This method requires a full forward pass of all the training
data, and the clustering operation cannot easily be scaled up
to large-scale classes. In [7], SmartMining was proposed,
which builds an approximate nearest neighbor graph for all
training samples after a full forward pass of the training data
for feature extraction. However, this instance-level mining
can be very expensive in computation, and even infeasible
for complex non-Euclidean metric layers. In contrast, we
propose and prove that sampling one example per class for
class mining works well for large-scale deep metric learning
without classification or instance-level mining.

3. Deep Metric Learning
There are two popular ways for learning deep person re-

identification neural networks. The first one is the classifi-
cation based method [43], also known as using the identi-
fication loss, or ID loss. This is a straightforward exten-
sion from general image classification. Since person re-
identification is an open-class problem, the learned classi-
fier is usually dropped after training. The last feature em-
bedding layer is usually adopted instead (known as the iden-
tity embedding, or IDE [43]), and the Euclidean or cosine
distance is applied to measure the distance between two
person images. The second one is the triplet loss based
method [9,23], which is usually combined with the ID loss.
Together with the online hard example mining, the triplet
loss is a very useful auxiliary loss function for enhancing
the discriminability of the learned model.

However, the above methods always require classifier
parameters, which incur large memory and computational
costs in both the forward and backward passes of large-scale
deep learning. When dot products are employed for classi-
fication this is still acceptable to some extent. However,
with more complex modules, e.g. QAConv [17] where a full
feature map convolution is required for matching, learning
with class signatures is difficult to scale up.

Therefore, for large-scale deep metric learning, we con-
sider removing classification layers. Accordingly, pairwise
matching between mini-batch samples is another solution
[15, 38]. We adopt QAConv as our baseline method, which
is the recent state of the art for generalizable person re-
identification. It constructs query adaptive convolutional
kernels on the fly for image matching, which suits pairwise
learning. However, the original design of QAConv learning
is based on the so-called class memory, which stores one
feature map for each class for image-to-class matching, in-
stead of using pairwise matching between mini-batch sam-



ples. Considering the matching complexity of the QAConv
layer, this is not efficient in large-scale learning. Therefore,
we only consider pairwise matching between mini-batch
samples for QAConv, and remove its class memory.

4. Graph Sampling
4.1. Motivation

As discussed, for deep metric learning, the well-known
PK sampler [9] is typically used to provide mini-batch sam-
ples. However, its random nature makes the sampled in-
stances not informative enough for discriminant learning.
In the PK sampler, as shown in Fig. 1 (a), P classes and K
images per class are randomly sampled for each mini batch.
Though an online hard example mining (OHEM) was fur-
ther proposed in [9] to find informative instances within a
mini batch, the PK sampler itself is still not efficient, as it
provides limited hard examples for OHEM to mine.

Therefore, the sampling method itself needs to be im-
proved so as to provide informative samples for mini
batches. Instead of using fully random sampling, the re-
lationships among classes need to be considered. Thus, we
construct a graph for all classes at the beginning of each
epoch, and always sample nearest neighboring classes in a
mini batch so as to enable discriminant learning. We call
this idea graph sampling (GS), which is detailed below.

4.2. GS Sampler

At the beginning of each epoch, we utilize the latest
learned model to evaluate the distances or similarities be-
tween classes, and then construct a graph for all classes.
This way, the relationships between classes can be used
for informative sampling. Specifically, we randomly se-
lect one image per class to construct a small sub-dataset.
Then, the feature embeddings with the current network are
extracted, denoted as X ∈ RC×d, where C is the total num-
ber of classes for training, and d is the feature dimension.
Next, pairwise distances between all the selected samples
are computed, e.g. by QAConv. As a result, a distance ma-
trix dist ∈ RC×C for all classes is obtained.

Then, for each class c, the top P − 1 nearest neighbor-
ing classes can be retrieved, denoted by N (c) = {xi|i =
1, 2, . . . , P − 1}, where P is the number of classes to sam-
ple in each mini batch. Accordingly, a graph G = (V,E)
can be constructed, where V = {c|c = 1, 2, . . . , C} rep-
resents the vertices, with each class being one node, and
E = {(c1, c2)|c2 ∈ N (c1)} represents the edges.

Finally, for the mini-batch sampling, for each class c as
anchor, we retrieve all its connected classes in G. Then,
together with the anchor class c, we obtain a set A =
{c}

⋃
{x|(c, x) ∈ E}, where |A| = P . Next, for each class

in A, we randomly sample K instances per class to gener-
ate a mini batch of B = P × K samples for training. A

pseudocode of the GS sampler is shown in Appendix A.
Note that, different from other mini-batch sampling

methods, for the GS sampler the number of mini batches
or iterations per epoch is always C, which is independent to
the parameters B, P , and K. Nevertheless, the parameter
B still affects the computational load of each mini batch.
Besides, one may worry that the GS sampler will be com-
putationally expensive. However, note that, firstly, only one
image per class is randomly sampled for the graph construc-
tion; and, secondly, the above computation is performed
only once per epoch. In practice, we find that the GS sam-
pler with QAConv, which is already a heavy matcher com-
pared to the mainstream Euclidean distance, only requires
tens of seconds for thousands of identities. Details will be
presented in the experimental section.

4.3. Loss Function

With mini batches provided by the GS sampler, we ap-
ply QAConv to compute similarity values between each pair
of images, and formulate a triplet-based ranking learning
problem within mini batches. Accordingly, we compute the
batch OHEM triplet loss [9] alone for metric learning:

ℓ(θ;X) =

P∑
i=1

K∑
a=1

[m− min
p=1...K

s(fθ(x
a
i ), fθ(x

p
i ))

+ max
j=1...P

j ̸=i
n=1...K

s(fθ(x
a
i ), fθ(x

n
j ))]+,

(1)

where X = {xa
i , i ∈ [1, P ], a ∈ [1,K]} contains the mini-

batch samples, θ is the network parameter, fθ is the feature
extractor, s(·, ·) is the similarity, and m is the margin.

Note that Eq. (1) is usually used as an auxiliary to the ID
loss, but not alone in person re-identification. This is proba-
bly because random samplers including PK cannot provide
informative mini batches for OHEM to mine, which makes
Eq. (1) very small or even zero, and so the learning is not
efficient. In contrast, with the proposed GS sampler, we
prove that the OHEM triplet loss works well by itself.

4.4. Gradient Clipping

Note that the GS sampler already provides almost the
hardest mini batches, and the batch OHEM triplet loss fur-
ther finds the hardest triplets within a mini batch for train-
ing. As a result, the model may suffer optimization diffi-
culty, which in turn may impact convergence during train-
ing. In practice, we find that limiting K = 2 alleviates
this problem significantly. Or otherwise, the binary cross-
entropy loss for pairwise matching can be a more stable al-
ternative to the OHEM triplet loss (see Appendix B).

Furthermore, to stabilize the training with the GS sam-
pler and the hard triplet loss, we clip the gradient norm dur-
ing the backward propagation. Specifically, let g be the gra-
dient of all parameters, and ∥g∥ be its norm. The gradient



will be clipped as g← min(1, T
∥g∥ ) ·g, where T is a prede-

fined threshold. That is, if the gradient norm is larger than
T then clip it to be T . Note that GS and OHEM provide the
hardest examples, which facilitates discriminant learning.
However, this may also lead to overfitting. Therefore, be-
sides stabilizing the training, the gradient clipping operation
is also useful to regularize noisy gradients to avoid overfit-
ting on source domain, and, in turn, improving the gener-
alization performance. The effect of this gradient clipping
will be analyzed in the experiments.

5. Experiments
5.1. Implementation Details

Our implementation is adapted from the official PyTorch
code of QAConv [17] (MIT license). We first build an im-
proved baseline based on QAConv. Specifically, ResNet-
50 [8] is used as the backbone, with IBN-b layers appended,
following several recent studies [11, 12, 20, 46, 48]. The
layer3 feature map is used, with a neck convolution of 128
channels appended as the final feature map. The input im-
age size is 384 × 128 (see Appendix E for results with
256 × 128). Several commonly used data augmentation
methods are applied, including random cropping, flipping,
occlusion [17], and color jittering. The batch size is set to
64. The SGD optimizer is adopted to train the network,
with a learning rate of 0.0005 for the backbone, and 0.005
for newly added layers. The maximal learning epochs are
60. When the initial loss is reduced as a factor of 0.7, the
learning rates are decayed by 0.1, and an early stopping is
triggered after a further half of the already learned epochs.
Gradient clipping is applied with T = 8. Automatic Mixed
Precision (AMP) in PyTorch is applied to accelerate train-
ing. When the proposed GS sampler is further applied (de-
noted by QAConv-GS), we use the hard triplet loss (m=16),
instead of the class memory based loss proposed in [17],
and the default parameters for GS are B=64, and K=2.

5.2. Datasets

Four large-scale person re-identification datasets,
CUHK03 [14], Market-1501 [42], MSMT17 [34], and
RandPerson [33] are used in our experiments. The
CUHK03 dataset contains 1,360 persons and 13,164
images. The most challenging subset named detected
is used for our experiments. Besides, the CUHK03-NP
protocol [45] is adopted, with 767 and 700 subjects used for
training and testing, respectively. The Market-1501 dataset
includes 32,668 images of 1,501 identities captured from
six cameras. The training subset contains 12,936 images
from 751 identities, while the test subset includes 19,732
images from 750 identities. The MSMT17 dataset contains
4,101 identities and 126,441 images captured from 15
cameras. It is divided into a training set of 32,621 images

from 1,041 identities, and a test set with the remaining
images from 3,010 identities. The RandPerson dataset
is a recently released synthetic person re-identification
dataset. It contains 8,000 persons and 1,801,816 images.
We use the subset including 132,145 images of the 8,000
identities. This dataset is only used for large-scale training
and generalization testing. Cross-dataset evaluation [10,38]
is performed on all datasets, by training on the training
subset of one dataset (except that with MSMT17 we further
used an additional setting with all images for training), and
evaluating on the test subset of another dataset. Rank-1 and
mean average precision (mAP) are used as the performance
metrics, evaluated under single-query evaluation protocol.

5.3. Comparison to the State of the Art

A comparison to the state of the art (SOTA) in general-
izable person re-identification is shown in Table 1, where
three datasets are used for training, and three others are
used for testing. Note that, with MSMT17 as the training
set, one setting is to use all images for training, regard-
less of its subset splits. This is denoted by MSMT17 (all).
Several generalizable person re-identification methods pub-
lished recently are compared, including OSNet-IBN [46],
OSNet-AIN [47], MuDeep [21], SNR [12], QAConv [17],
CBN [48], ADIN [39], and M3L [41]. Table 1 shows that
QAConv-GS significantly improves the previous SOTA. For
example, with Market-1501 → CUHK03, the Rank-1 and
mAP are improved by 8.8% and 9.0%, respectively. With
Market-1501→MSMT17, they are improved by 20.6% and
7.7%, respectively. With MSMT17 (all) → Market-1501,
the improvements are 9.8% for Rank-1 and 13.8% for mAP.
With RandPerson as the training data, the improvements on
Market-1501 are 12% for Rank-1 and 7.4% for mAP, while
the improvements on MSMT17 are 25.1% for Rank-1 and
8.7% for mAP. Though RandPerson is synthetic, the results
show that models learned on it generalize quite well to real-
world datasets, which confirms the findings in [33].

Note that, M3L [41] uses a different evaluation pro-
tocol, and thus the results are not directly compara-
ble. Specifically, M3L is trained on three datasets se-
lected from CUHK03, Market-1501, DukeMTMC-reID1,
and MSMT17, while the other is held for testing. Impres-
sive results are obtained by M3L on CUHK03-NP, which,
though not directly comparable, exceed all our results, in-
cluding those trained with all MSMT17 images. However,
on Market-1501, the proposed method trained on MSMT17
outperforms M3L in Rank-1 by 3.2%, while the mAPs
are comparable. Furthermore, on MSMT17, the proposed
method trained on Market-1501 significantly outperforms
M3L, with 9% gain in Rank-1 and 2.5% in mAP. This is
quite encouraging, since in both cases our training dataset
is a subset of that used by M3L.

1It is no longer available, so we do not use it in our experiments.



Method Venue Training CUHK03-NP Market-1501 MSMT17
Rank-1 mAP Rank-1 mAP Rank-1 mAP

M3L [41] CVPR’21 Multi 33.1 32.1 75.9 50.2 36.9 14.7
MGN [21, 32] ACMMM’18 Market-1501 8.5 7.4 95.7 86.9 - -
MuDeep [21] TPAMI’20 Market-1501 10.3 9.1 95.3 84.7 - -
QAConv [17] ECCV’20 Market-1501 9.9 8.6 - - 22.6 7.0

OSNet-AIN [47] TPAMI’21 Market-1501 - - 94.2 84.4 23.5 8.2
CBN [48] ECCV’20 Market-1501 - - 91.3 77.3 25.3 9.5

QAConv-GS Ours Market-1501 19.1 18.1 91.6 75.5 45.9 17.2
PCB [29, 39] ECCV’18 MSMT17 - - 52.7 26.7 - -
MGN [32, 39] ACMMM’18 MSMT17 - - 48.7 25.1 - -

ADIN [39] WACV’20 MSMT17 - - 59.1 30.3 - -
SNR [12] CVPR’20 MSMT17 - - 70.1 41.4 - -
CBN [48] ECCV’20 MSMT17 - - 73.7 45.0 72.8 42.9

QAConv-GS Ours MSMT17 20.9 20.6 79.1 49.5 79.2 50.9
OSNet-IBN [46] CVPR’19 MSMT17 (all) - - 66.5 37.2 - -
OSNet-AIN [47] TPAMI’21 MSMT17 (all) - - 70.1 43.3 - -

QAConv [17] ECCV’20 MSMT17 (all) 25.3 22.6 72.6 43.1 - -
QAConv-GS Ours MSMT17 (all) 27.6 28.0 82.4 56.9 - -

RP Baseline [33] ACMMM’20 RandPerson 13.4 10.8 55.6 28.8 20.1 6.3
CBN [40] ECCV’20 RandPerson - - 64.7 39.3 20.0 6.8

QAConv-GS Ours RandPerson 18.4 16.1 76.7 46.7 45.1 15.5

Table 1. Comparison of the state-of-the-art direct cross-dataset evaluation results (%). MSMT17 (all) means all images are used for training,
regardless of subset splits. M3L is trained on three datasets selected from CUHK03, Market-1501, DukeMTMC-reID, and MSMT17, while
the other is held for testing. Results in gray cells are with within-dataset evaluation for a reference. “-” means not reported or not applicable.

5.4. Ablation Study

5.4.1 Comparison of QAConv variants

Table 2 shows a comparison among different variations
of QAConv: the original QAConv [17] (denoted as Ori),
the competitive QAConv baseline we adapted (denoted as
Base), and the proposed QAConv-GS. It shows that, beyond
the successful learning scheme of the class memory module
proposed in QAConv, QAConv-GS with the proposed GS
sampler is also very effective in learning discriminant mod-
els. QAConv-GS outperforms the competitive baseline for
all experiments, by 6.8% and 5.4% in Rank-1, respectively,
on CUHK03 and Market-1501 when trained on MSMT17.

Interestingly, Table 2 also shows that the within-dataset
evaluation results are also improved by QAConv-GS com-
pared to the baseline. However, improving performance on
a single dataset does not always lead to better generaliza-
tion, since it may also overfit a dataset, as can be observed
in Table 1. Therefore, we suggest a focus on generalization
since it is more critical for practical applications.

Furthermore, we also compare the training time of QA-
Conv (with class memory) and QAConv-GS. Both meth-
ods are tested on a single NVIDIA V100 GPU. From the
comparison shown in Table 2, it can be observed that the
original QAConv learned with class memory becomes very

Training CUHK03 Market MSMT17
Data Hours R1 mAP R1 mAP R1 mAP

Ori Market 1.33 9.9 8.6 - - 22.6 7.0
Base Market 0.47 14.6 14.6 88.7 71.4 42.6 15.8
GS Market 0.25 19.1 18.1 91.6 75.5 45.9 17.2

Base MSMT 1.33 14.1 15.7 73.7 44.7 72.5 43.4
GS MSMT 0.73 20.9 20.6 79.1 49.5 79.2 50.9
Ori MS-all 26.9 25.3 22.6 72.6 43.1 - -

Base MS-all 15.0 23.4 23.1 80.1 53.2 - -
GS MS-all 3.42 27.6 28.0 82.4 56.9 - -

Base RP 25.4 15.2 14.6 75.9 46.0 44.4 15.5
GS RP 2.0 18.4 16.1 76.7 46.7 45.1 15.5

Table 2. Comparison of QAConv variants. Ori: the original QA-
Conv [17]. Base: the competitive baseline we adapted. GS: graph
sampling (ours). MS-all: MSMT17 (all). RP: RandPerson.

slow when trained on large-scale datasets, such as the full
MSMT17 or RandPerson. This is not surprising, because
in each mini-batch iteration, the QAConv with class mem-
ory needs to compute matching scores between mini-batch
samples and the feature map memory of all classes; and the
number of classes is 4,101 in MSMT17, and 8,000 in Rand-



Person. In contrast, the proposed pairwise learning with the
GS sampler is much more efficient because it avoids match-
ing all classes in each iteration. As can be seen from Table
2, the training time of the baseline QAConv can be reduced
from 25.4 hours to 2 hours when trained on RandPerson
with 8,000 identities, which is a significant achievement.

In addition, we also evaluate the sampling efficiency of
the proposed GS sampler. As stated earlier, it constructs a
graph at the beginning of each epoch. We evaluate the run-
ning time of all the computations in GS. The results are 4
seconds on Market-1501, 9 seconds on the MSMT17 train-
ing subset, 40 seconds on the full MSMT17 dataset, and
138 seconds on RandPerson with 8,000 identities. There-
fore, the GS sampler is in fact efficient, despite being incor-
porated into QAConv, which is a heavy matcher compared
to the mainstream Euclidean distance.

5.4.2 Comparison of different sampling methods

In Table 3, using the same QAConv and hard triplet loss,
we compare three mini-batch sampling methods, including
PK, a clustering based method [30] (denoted as Cluster),
and GS. Besides, the implementation of PK and Cluster fol-
lows GS, where the number of batches per epoch is deter-
mined by the number of classes. For [30], since k-means
does not support non-Euclidean metric, we replace it with
spectral clustering. The subspace parameter M in [30] is set
to 10, after an optimization in [5, 50]. From Table 3, we can
see that PK performs the worst, due to its fully random na-
ture, which does not provide enough hard examples in mini
batches. Besides, we can see that, with the subspace cluster-
ing method proposed in [30], the performance is generally
improved, thanks to the more informative mini batches sam-
pled within each cluster. However, feature extraction from
the whole training set and clustering of all classes are time
consuming. In contrast, the proposed GS sampler is more
efficient, since it only considers one example per class for
the graph construction. Furthermore, GS also achieves the
best performance, with improvements over Cluster of up to
4.7% in Rank-1, and 3.4% in mAP. We believe that clus-
tering is less effective than graph based GS due to two rea-
sons. First, only cluster centers may be surrounded by their
dense neighbors, while others, especially boundary points
(classes), may not be always with their full set of neighbors
in the same cluster. Second, mini-batch classes need to be
randomly sampled within a cluster, of which the operation
may further miss out some nearest neighbors of each class.

Furthermore, in Appendix C, applications to two other
baselines, OSNet [46] and TransMatcher [18], also verify
the generality of GS’s advantage over PK. Besides, applica-
tion to unsupervised domain adaptation (UDA) with GS in
SpCL [6] is discussed in Appendix D, and a variant of GS
using class centers is analyzed in Appendix E.

Method Training CUHK03 Market MSMT17
Data Time R1 mAP R1 mAP R1 mAP

PK Market 99 17.9 17.0 - - 43.3 15.6
Cluster Market 117 18.4 17.3 - - 44.0 15.8

GS Market 100 19.1 18.1 - - 45.9 17.2
PK MSMT 141 18.6 18.8 75.7 46.1 - -

Cluster MSMT 196 18.4 19.2 77.2 47.6 - -
GS MSMT 145 20.9 20.6 79.1 49.5 - -
PK MS-all 669 24.5 24.6 78.7 52.1 - -

Cluster MS-all 881 26.3 26.3 80.4 54.2 - -
GS MS-all 685 27.6 28.0 82.4 56.9 - -
PK RP 1,150 16.9 14.7 73.2 43.5 40.3 13.1

Cluster RP 1,922 17.3 15.0 73.3 43.3 40.4 13.4
GS RP 1,397 18.4 16.1 76.7 46.7 45.1 15.5

Table 3. Comparison of different sampling methods. MS-all:
MSMT17 (all). RP: RandPerson. Time is with seconds per epoch.

(a) Effect of batch size B

(b) Effect of margin m

Figure 2. mAcc (%) performance with (a) different batch sizes,
and (b) different margin parameters, trained on MSMT17.

5.4.3 Parameter analysis

In Fig. 2, we show the performance of the proposed method
with different batch sizes and margin parameters. The train-
ing is performed on MSMT17. For ease and reliable com-
parison, we report the average (denoted by mAcc) of all
Rank-1 and mAP results on all test sets over four random
runs. We observe that, generally, the accuracy increases
with increasing batch size B, but saturates at 64. As for the
margin parameter m, note that the QAConv similarity score
s(·, ·) used in Eq. (1) ranges in (-∞, +∞). Fig. 2(b) shows



Figure 3. Influence of gradient clipping, trained on three datasets.

that the performance slightly improves with increasing m
due to the increased discriminability, and achieves the best
with m=16. However, after m=32, the performance drops
significantly, due to intractable learning difficulty.

5.4.4 Effect of gradient clipping

Next, we study the effect of gradient clipping on the learn-
ing of QAConv-GS. The results are shown in Fig. 3. In-
terestingly, when trained on MSMT17, the performance is
less affected without gradient clipping (Inf). Specifically,
with gradient clipping, only a slight improvement can be
obtained, but too small threshold T even prevent effec-
tive model learning. This is because, in our experiments,
MSMT17 is the most comprehensive dataset. It provides
large-scale and diverse training examples, which prevents
overfitting in the view of “regularization from data”. How-
ever, with the small-scale training dataset Market-1501, and
the quite different synthetic dataset RandPerson, gradient
clipping does provide useful regularization for model train-
ing, and improves the generalization performance. There-
fore, a reasonable value of T=8 is considered as a trade-off.

5.4.5 Visualization of GS

Fig. 4 shows some examples (more in Appendix F) of the
nearest neighboring classes generated by the GS sampler.
As can be observed, the GS sampler is indeed able to find
similar classes as hard examples to challenge the learning.
For example, it identifies similar kinds of clothes, colors,
patterns, and accessories. These confusing examples help a
lot in learning discriminative models.

6. Conclusion
With this study, we show that the popular PK sampler is

not efficient in deep metric learning, and thus we propose a
new batch sampler, called the graph sampler, to help learn-
ing discriminant models more efficiently. This is achieved

(a) Market-1501

(b) MSMT17

Figure 4. Groups of examples of the nearest neighboring classes
generated by the GS sampler when trained on (a) Market-1501 and
(b) MSMT17. In each group, the upper left image is the center
class, and other images are the top-7 nearest neighboring classes.

by constructing a nearest neighbor graph of all classes for
informative sampling. Together with a competitive base-
line, we achieve the new state of the art in generalizable per-
son re-identification with a significant improvement. Mean-
while, the training time is much reduced by removing the
classification parameters and only using the pairwise dis-
tances between mini batches for loss computation. We be-
lieve the proposed technique is general and may also be ap-
plied in other fields, such as image retrieval, and face recog-
nition, among others. Moreover, we discuss social impacts
and some limitations of this research in Appendix G and H.
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